

MicroStructPy - Microstructure Mesh Generation in Python

[image: Continuous Integration] [https://github.com/kip-hart/MicroStructPy/actions]
[image: License] [https://github.com/kip-hart/MicroStructPy/blob/master/LICENSE.rst]
[image: DOI] [https://doi.org/10.1016/j.cma.2020.113242]

[image: GitHub] Repository [https://github.com/kip-hart/MicroStructPy]
[image: ReadTheDocs] Documentation [https://docs.microstructpy.org]
[image: PyPI] PyPI [https://pypi.org/project/microstructpy/]

MicroStructPy is a microstructure mesh generator written in Python.
Features of MicroStructPy include:

	2D and 3D microstructures

	Grain size, shape, orientation, and position control

	Polycrystals, amorphous phases, and voids

	Mesh verification

	Visualizations

	Output to common file formats

	Customizable workflow

[image: Banner image showing the three steps for creating microstructure.]
Fig. 1 The primary steps to create a microstructure.
1) seed the domain with particles,
2) create a Voronoi power diagram, and
3) convert the diagram into an unstructured mesh.

Examples

These images were created using MicroStructPy.
For more examples, see the Examples section.

[image: Several examples created using MicroStructPy.]
Fig. 2 Examples created using MicroStructPy.

Quick Start

To install MicroStructPy, download it from PyPI using:

pip install microstructpy

If there is an error with the install, try pip install pybind11 first,
then install MicroStructPy.
This will create a command line executable and python package both
named microstructpy.
To use the command line interface, create a file called input.xml and copy
this into it:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size> 0.15 </size>
 </material>

 <domain>
 <shape> square </shape>
 </domain>
</input>

Next, run the file from the command line:

microstructpy input.xml

This will produce three text files and three image files: seeds.txt,
polymesh.txt, trimesh.txt, seeds.png, polymesh.png, and
trimesh.png.
The text files contain all of the data related to the seed geometries and
meshes.
The image files contain:

[image: Seed geometries, polygonal mesh, and unstructured mesh for min. expl.]
Fig. 3 The output plots are:
1) seed geometries, 2) polygonal mesh, and 3) triangular mesh.

The same results can be produced using this script:

import matplotlib.pyplot as plt
import microstructpy as msp

phase = {'shape': 'circle', 'size': 0.15}
domain = msp.geometry.Square()

Unpositioned list of seeds
seeds = msp.seeding.SeedList.from_info(phase, domain.area)

Position seeds in domain
seeds.position(domain)

Create polygonal mesh
polygon_mesh = msp.meshing.PolyMesh.from_seeds(seeds, domain)

Create triangular mesh
triangle_mesh = msp.meshing.TriMesh.from_polymesh(polygon_mesh)

Plot outputs
for output in [seeds, polygon_mesh, triangle_mesh]:
 plt.figure()
 output.plot(edgecolor='k')
 plt.axis('image')
 plt.axis([-0.5, 0.5, -0.5, 0.5])
 plt.show()

Publications

If you use MicroStructPy in you work, please consider including this citation
in your bibliography:

K. A. Hart and J. J. Rimoli, Generation of statistically representative
microstructures with direct grain geomety control,
Computer Methods in Applied Mechanics and Engineering,
370 (2020), pp. 113242.
(BibTeX [https://github.com/kip-hart/MicroStructPy/raw/master/docs/publications/cmame2020.bib])
(DOI [https://doi.org/10.1016/j.cma.2020.113242])

License and Attribution

MicroStructPy is open source and freely available.
Copyright for MicroStructPy is held by Georgia Tech Research Corporation.
MicroStructPy is a major part of Kenneth (Kip) Hart’s doctoral thesis,
advised by Prof. Julian Rimoli.

Getting Started

Download & Installation

To install MicroStructPy, download it from PyPI using:

pip install microstructpy

This installs both the microstructpy Python package and the
microstructpy command line interface (CLI).
If there is an error with the install, try to install pybind11 first.
You may need to add the --user flag, depending on your permissions.

To verify installation of the package, run the following commands:

python -c 'import microstructpy'
microstructpy --help

This verifies that 1) the python package has installed correctly and 2) the
command line interface (CLI) has been found by the shell.
If there is an issue with the CLI, the install location may not be in the
PATH variable.
The most likely install location is ~/.local/bin for Mac or Linux machines.
For Windows, it may be in a path similar to
~\AppData\Roaming\Python\Python36\Scripts\.

Note

If the install fails and the last several error messages reference
pybind11, run pip install pybind11 first then install MicroStructPy.

Running Demonstrations

MicroStructPy comes with several demonstrations to familiarize users with its
capabilities and options.
A demonstration can be run from the command line by:

microstructpy --demo=minimal.xml

When a demo is run, the XML input file is copied to the current working
directory.
See Examples for a full list of available examples and
demostrations.

Development

Contributions to MicroStructPy are most welcome.
To download and install the source code for the project:

git clone https://github.com/kip-hart/MicroStructPy.git
pip install -e MicroStructPy

MicroStructPy uses tox [https://tox.readthedocs.io] to run tests and build the documentation.
To perform these tests:

pip install tox
cd MicroStructPy
tox

Please use the issue and pull request features of the GitHub repository [https://github.com/kip-hart/MicroStructPy]
to report bugs and modify the code.

Examples

The following contains examples of MicroStructPy.
These examples include an introduction to the XML input files,
some more advanced input files used on the CLI,
and scripts that use the Python package.

Input File Introduction

	1. Basic Example

	2. Quality Controls

	3. Size & Shape

	4. Oriented Grains

	5. Plot Controls

	6. Culmination

[image: Triangular mesh from first intro example.]
[image: Triangular mesh from second intro example.]
[image: Triangular mesh from third intro example.]
[image: Triangular mesh from fourth intro example.]
[image: Triangular mesh from fifth intro example.]
[image: Triangular mesh from sixth intro example.]

CLI Examples

	Elliptical Grains

	Minimal Example

	Picritic Basalt

	Two Phase 3D Example

	Colormap

[image: Triangular mesh with elliptical grains.]
[image: Polygonal mesh from minimal example.]
[image: Triangular mesh from basalt example.]
[image: Polygonal mesh from 3D two phase example.]
[image: Triangular mesh from 3D colormap example.]

Python Package Examples

	Standard Voronoi Diagram

	Uniform Seeding Voronoi Diagram

	Foam

	MicroStructPy Logo

	Grain Neighborhoods

	Microstructure from Image

	Microstructure Mesh Process

[image: Standard Voronoi diagram.]
[image: Voronoi diagram with uniformly-spaced seeds, colored by area.]
[image: Mesh of foam microstructure.]
[image: MicroStructPy logo.]
[image: Triangular mesh of microstructure with seed neighborhoods.]
[image: Triangular mesh of aluminum microstructure.]
[image: Microstructure meshing process..]

1. Basic Example

1.1. XML Input File

The basename for this file is intro_1_basic.xml.
The file can be run using this command:

microstructpy --demo=intro_1_basic.xml

The full text of the file is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <name> Matrix </name>
 <material_type> matrix </material_type>
 <fraction> 2 </fraction>
 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 1.5 </scale>
 </size>
 </material>

 <material>
 <name> Inclusions </name>
 <fraction> 1 </fraction>
 <shape> circle </shape>
 <diameter> 2 </diameter>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 20 </side_length>
 <corner> (0, 0) </corner>
 </domain>

 <settings>
 <verbose> True </verbose>
 <directory> intro_1_basic </directory>
 </settings>
</input>

1.2. Materials

There are two materials, in a 2:1 ratio based on volume.
The first is a matrix, which is represented with small circles.
The size and shape of matrix grain particles are not critical, since
the boundaries between them will be removed before triangular meshing.
The second material consists of circular inclusions with diameter 2.

1.3. Domain Geometry

The domain of the microstructure is a square with its bottom-left
corner fixed to the origin.
The side length is 20, which is 10x the size of the inclusions to ensure that
the microstructure is statistically representative.

1.4. Settings

Many settings have been left to their defaults, with the exceptions being the
verbose mode and output directory.

By default, MicroStructPy does not print status updates to the command line.
Switching the verbose mode on will regularly print the status of the code.

The output directory is a filepath for writing text and image files.
By default, MicroStructPy outputs texts files containing data on the seeds,
polygon mesh, and triangular mesh as well as the corresponding image files,
saved in PNG format.

Note

The <directory> field can be an absolute or relative filepath. If it is
relative, outputs are written relative to the input file, not the
current working directory.

1.5. Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 1.1 -
Fig. 1.3.

[image: Seed geometries.]
Fig. 1.1 Introduction 1 - seed geometries.

[image: Polygonal mesh.]
Fig. 1.2 Introduction 1 - polygonal mesh.

[image: Triangular mesh.]
Fig. 1.3 Introduction 1 - triangular mesh.

2. Quality Controls

2.1. XML Input File

The basename for this file is intro_2_quality.xml.
The file can be run using this command:

microstructpy --demo=intro_2_quality.xml

The full text of the file is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <name> Matrix </name>
 <material_type> matrix </material_type>
 <fraction> 2 </fraction>

 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 1.5 </scale>
 </size>
 </material>

 <material>
 <name> Inclusions </name>
 <fraction> 1 </fraction>
 <shape> circle </shape>
 <diameter> 2 </diameter>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 20 </side_length>
 <corner> (0, 0) </corner>
 </domain>

 <settings>
 <directory> intro_2_quality </directory>
 <verbose> True </verbose>

 <!-- Mesh Quality Settings -->
 <mesh_min_angle> 25 </mesh_min_angle>
 <mesh_max_volume> 1 </mesh_max_volume>
 <mesh_max_edge_length> 0.1 </mesh_max_edge_length>
 </settings>
</input>

2.2. Materials

There are two materials, in a 2:1 ratio based on volume.
The first is a matrix, which is represented with small circles.
The second material consists of circular inclusions with diameter 2.

2.3. Domain Geometry

These two materials fill a square domain.
The bottom-left corner of the rectangle is the origin, which puts the
rectangle in the first quadrant.
The side length is 20, which is 10x the size of the inclusions to ensure that
microstructure is statistically representative.

2.4. Settings

The first two settings determine the output directory and whether to run the
program in verbose mode.
The following settings determine the quality of the triangular mesh.

The minimum interior angle of the elements is 25 degrees, ensuring lower
aspect ratios compared to the first example.
The maximum area of the elements is also limited to 1, which populates the
matrix with smaller elements.
Finally, The maximum edge length of elements at interfaces is set to 0.1,
which increasing the mesh density surrounding the inclusions and at the
boundary of the domain.

Note that the edge length control is currently unavailable in 3D.

2.5. Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 2.1 -
Fig. 2.3.

[image: Seed geometries.]
Fig. 2.1 Introduction 2 - seed geometries.

[image: Polygonal mesh.]
Fig. 2.2 Introduction 2 - polygonal mesh.

[image: Triangular mesh.]
Fig. 2.3 Introduction 2 - triangular mesh.

3. Size & Shape

3.1. XML Input File

The basename for this file is intro_3_size_shape.xml.
The file can be run using this command:

microstructpy --demo=intro_3_size_shape.xml

The full text of the file is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <name> Matrix </name>
 <material_type> matrix </material_type>
 <fraction> 2 </fraction>

 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 1.5 </scale>
 </size>
 </material>

 <material>
 <name> Inclusions </name>
 <fraction> 1 </fraction>
 <shape> ellipse </shape>
 <size>
 <dist_type> triang </dist_type>
 <loc> 0 </loc>
 <scale> 2 </scale>
 <c> 1 </c>
 </size>
 <aspect_ratio>
 <dist_type> uniform </dist_type>
 <loc> 1 </loc>
 <scale> 2 </scale>
 </aspect_ratio>
 <angle> random </angle>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 20 </side_length>
 <corner> (0, 0) </corner>
 </domain>

 <settings>
 <directory> intro_3_size_shape </directory>
 <verbose> True </verbose>
 </settings>
</input>

3.2. Materials

There are two materials, in a 2:1 ratio based on volume.
The first is a matrix, which is represented with small circles.

The second material consists of elliptical inclusions with size ranging from
0 to 2 and aspect ratio ranging from 1 to 3.
Note that the size is defined as the diameter of a circle with equivalent area.
The orientation angle of the inclusions are random, specifically they are
uniformly distributed from 0 to 360 degrees.

3.3. Domain Geometry

These two materials fill a square domain.
The bottom-left corner of the rectangle is the origin, which puts the
rectangle in the first quadrant.
The side length is 20, which is 10x the size of the inclusions
to ensure that the microstructure is statistically representative.

3.4. Settings

Many settings have been left to their defaults, with the exceptions being the
verbose mode and output directory.

By default, MicroStructPy does not print status updates to the command line.
Switching the verbose mode on will regularly print the status of the code.

The output directory is a filepath for writing text and image files.
By default, MicroStructPy outputs texts files containing data on the seeds,
polygon mesh, and triangular mesh as well as the corresponding image files,
saved in PNG format.

Note

The <directory> field can be an absolute or relative filepath. If it is
relative, outputs are written relative to the input file, not the
current working directory.

3.5. Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 3.1 -
Fig. 3.3.

[image: Seed geometries.]
Fig. 3.1 Introduction 3 - seed geometries.

[image: Polygonal mesh.]
Fig. 3.2 Introduction 3 - polygonal mesh.

[image: Triangular mesh.]
Fig. 3.3 Introduction 3 - triangular mesh.

4. Oriented Grains

4.1. XML Input File

The basename for this file is intro_4_oriented.xml.
The file can be run using this command:

microstructpy --demo=intro_4_oriented.xml

The full text of the file is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <name> Matrix </name>
 <material_type> matrix </material_type>
 <fraction> 2 </fraction>

 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 1.5 </scale>
 </size>
 </material>

 <material>
 <name> Inclusions </name>
 <fraction> 1 </fraction>
 <shape> ellipse </shape>
 <size>
 <dist_type> triang </dist_type>
 <loc> 0 </loc>
 <scale> 2 </scale>
 <c> 1 </c>
 </size>
 <aspect_ratio>
 <dist_type> uniform </dist_type>
 <loc> 1 </loc>
 <scale> 2 </scale>
 </aspect_ratio>
 <angle_deg>
 <dist_type> uniform </dist_type>
 <loc> -10 </loc>
 <scale> 20 </scale>
 </angle_deg>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 20 </side_length>
 <corner> (0, 0) </corner>
 </domain>

 <settings>
 <directory> intro_4_oriented </directory>
 <verbose> True </verbose>
 </settings>
</input>

4.2. Materials

There are two materials, in a 2:1 ratio based on volume.
The first is a matrix, which is represented with small circles.

The second material consists of elliptical inclusions with size ranging from
0 to 2 and aspect ratio ranging from 1 to 3.
Note that the size is defined as the diameter of a circle with equivalent area.
The orientation angle of the inclusions are uniformly distributed between -10
and +10 degrees, relative to the +x axis.

4.3. Domain Geometry

These two materials fill a square domain.
The bottom-left corner of the rectangle is the origin, which puts the
rectangle in the first quadrant.
The side length is 20, which is 10x the size of the inclusions
to ensure that the microstructure is statistically representative.

4.4. Settings

Many settings have been left to their defaults, with the exceptions being the
verbose mode and output directory.

By default, MicroStructPy does not print status updates to the command line.
Switching the verbose mode on will regularly print the status of the code.

The output directory is a filepath for writing text and image files.
By default, MicroStructPy outputs texts files containing data on the seeds,
polygon mesh, and triangular mesh as well as the corresponding image files,
saved in PNG format.

Note

The <directory> field can be an absolute or relative filepath. If it is
relative, outputs are written relative to the input file, not the
current working directory.

4.5. Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 4.1 -
Fig. 4.3.

[image: Seed geometries.]
Fig. 4.1 Introduction 4 - seed geometries.

[image: Polygonal mesh.]
Fig. 4.2 Introduction 4 - polygonal mesh.

[image: Triangular mesh.]
Fig. 4.3 Introduction 4 - triangular mesh.

5. Plot Controls

5.1. XML Input File

The basename for this file is intro_5_plotting.xml.
The file can be run using this command:

microstructpy --demo=intro_5_plotting.xml

The full text of the file is given below.

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <material_type> matrix </material_type>
 <fraction> 2 </fraction>

 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 1.5 </scale>
 </size>
 <color> pink </color>
 </material>

 <material>
 <fraction> 1 </fraction>
 <shape> circle </shape>
 <diameter> 2 </diameter>
 <color> lime </color>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 20 </side_length>
 <corner> (0, 0) </corner>
 </domain>

 <settings>
 <filetypes>
 <seeds_plot> png </seeds_plot>
 <poly_plot> png, pdf </poly_plot>
 <tri_plot> png </tri_plot>
 <tri_plot> eps </tri_plot>
 <tri_plot> pdf </tri_plot>
 </filetypes>

 <directory> intro_5_plotting </directory>
 <verbose> True </verbose>

 <seeds_kwargs>
 <alpha> 0.5 </alpha>
 <edgecolors> none </edgecolors>
 </seeds_kwargs>

 <poly_kwargs>
 <linewidth> 3 </linewidth>
 <edgecolors> #A4058F </edgecolors>
 </poly_kwargs>

 <tri_kwargs>
 <linewidth> 0.2 </linewidth>
 <edgecolor> navy </edgecolor>
 </tri_kwargs>

 <plot_axes> False </plot_axes>
 </settings>
</input>

5.2. Materials

There are two materials, in a 2:1 ratio based on volume.
The first is a pink matrix, which is represented with small circles.

The second material consists of lime green circular inclusions with diameter 2.

5.3. Domain Geometry

These two materials fill a square domain.
The bottom-left corner of the rectangle is the origin, which puts the
rectangle in the first quadrant.
The side length is 20, which is 10x the size of the inclusions.

5.4. Settings

PNG files of each step in the process will be output, as well as the
intermediate text files.
They are saved in a folder named intro_5_plotting, in the current directory
(i.e ./intro_5_plotting).
PDF files of the poly and tri mesh are also generated, plus an EPS file for the
tri mesh.

The seeds are plotted with transparency to show the overlap between them.
The poly mesh is plotted with thick purple edges and the tri mesh is plotted
with thin navy edges.

In all of the plots, the axes are toggles off, creating image files with
minimal borders.

5.5. Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 5.1 -
Fig. 5.3.

[image: Seed geometries.]
Fig. 5.1 Introduction 5 - seed geometries.

[image: Polygonal mesh.]
Fig. 5.2 Introduction 5 - polygonal mesh.

[image: Triangular mesh.]
Fig. 5.3 Introduction 5 - triangular mesh.

6. Culmination

6.1. XML Input File

The basename for this file is intro_6_culmination.xml.
The file can be run using this command:

microstructpy --demo=intro_6_culmination.xml

The full text of the file is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <material_type> matrix </material_type>
 <fraction> 2 </fraction>

 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 1.5 </scale>
 </size>
 <color> pink </color>
 </material>

 <material>
 <fraction> 1 </fraction>
 <shape> ellipse </shape>
 <size>
 <dist_type> triang </dist_type>
 <loc> 0 </loc>
 <scale> 2 </scale>
 <c> 1 </c>
 </size>
 <aspect_ratio>
 <dist_type> uniform </dist_type>
 <loc> 1 </loc>
 <scale> 2 </scale>
 </aspect_ratio>
 <angle_deg>
 <dist_type> uniform </dist_type>
 <loc> -10 </loc>
 <scale> 20 </scale>
 </angle_deg>
 <color> lime </color>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 20 </side_length>
 <corner> (0, 0) </corner>
 </domain>

 <settings>
 <filetypes>
 <seeds_plot> png </seeds_plot>
 <poly_plot> png, pdf </poly_plot>
 <tri_plot> png </tri_plot>
 <tri_plot> eps </tri_plot>
 <tri_plot> pdf </tri_plot>
 </filetypes>

 <directory> intro_6_culmination </directory>
 <verbose> True </verbose>

 <mesh_min_angle> 25 </mesh_min_angle>
 <mesh_max_volume> 1 </mesh_max_volume>
 <mesh_max_edge_length> 0.1 </mesh_max_edge_length>

 <seeds_kwargs>
 <alpha> 0.5 </alpha>
 <edgecolors> none </edgecolors>
 </seeds_kwargs>

 <poly_kwargs>
 <linewidth> 3 </linewidth>
 <edgecolors> #A4058F </edgecolors>
 </poly_kwargs>

 <tri_kwargs>
 <linewidth> 0.2 </linewidth>
 <edgecolor> navy </edgecolor>
 </tri_kwargs>

 <plot_axes> False </plot_axes>
 </settings>
</input>

6.2. Materials

There are two materials, in a 2:1 ratio based on volume.
The first is a pink matrix, which is represented with small circles.

The second material consists of lime green elliptical inclusions with size
ranging from 0 to 2 and aspect ratio ranging from 1 to 3.
Note that the size is defined as the diameter of a circle with equivalent area.
The orientation angle of the inclusions are uniformly distributed between -10
and +10 degrees, relative to the +x axis.

6.3. Domain Geometry

These two materials fill a square domain.
The bottom-left corner of the rectangle is the origin, which puts the
rectangle in the first quadrant.
The side length is 20, which is 10x the size of the inclusions.

6.4. Settings

PNG files of each step in the process will be output, as well as the
intermediate text files.
They are saved in a folder named intro_5_plotting, in the current directory
(i.e ./intro_5_plotting).
PDF files of the poly and tri mesh are also generated, plus an EPS file for the
tri mesh.

The seeds are plotted with transparency to show the overlap between them.
The poly mesh is plotted with thick purple edges and the tri mesh is plotted
with thin navy edges.

In all of the plots, the axes are toggles off, creating image files with
minimal borders.

The minimum interior angle of the elements is 25 degrees, ensuring lower
aspect ratios compared to the first example.
The maximum area of the elements is also limited to 1, which populates the
matrix with smaller elements.
Finally, The maximum edge length of elements at interfaces is set to 0.1,
which increasing the mesh density surrounding the inclusions and at the
boundary of the domain.

Note that the edge length control is currently unavailable in 3D.

6.5. Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 6.1 -
Fig. 6.3.

[image: Seed geometries.]
Fig. 6.1 Introduction 6 - seed geometries.

[image: Polygonal mesh.]
Fig. 6.2 Introduction 6 - polygonal mesh.

[image: Triangular mesh.]
Fig. 6.3 Introduction 6 - triangular mesh.

Elliptical Grains

XML Input File

The basename for this file is elliptical_grains.xml.
The file can be run using this command:

microstructpy --demo=elliptical_grains.xml

The full text of the file is:

<?xml version="0.5" encoding="UTF-8"?>
<input>
 <material>
 <fraction> 2 </fraction>
 <shape> ellipse </shape>
 <a>
 <dist_type> uniform </dist_type>
 <loc> 0.2 </loc>
 <scale> 0.35 </scale>

 0.05
 <angle_deg>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 20 </scale>
 </angle_deg>
 <color> orange </color>
 </material>

 <material>
 <fraction> 1 </fraction>
 <shape> circle </shape>
 <area>
 <dist_type> lognorm </dist_type>
 <scale> 0.004 </scale>
 <s> 1.0 </s>
 </area>
 <color> plum </color>
 </material>

 <material>
 <fraction> 1 </fraction>
 <shape> circle </shape>
 <area>
 <dist_type> lognorm </dist_type>
 <scale> 0.004 </scale>
 <s> 1.0 </s>
 </area>
 <color> lightblue </color>
 </material>

 <material>
 <fraction> 1 </fraction>
 <shape> circle </shape>
 <area>
 <dist_type> lognorm </dist_type>
 <scale> 0.004 </scale>
 <s> 1.0 </s>
 </area>
 <color> lightgreen </color>
 </material>

 <material>
 <fraction> 1 </fraction>
 <shape> circle </shape>
 <area>
 <dist_type> lognorm </dist_type>
 <scale> 0.004 </scale>
 <s> 1.0 </s>
 </area>
 <color> khaki </color>
 </material>

 <domain>
 <shape> rectangle </shape>
 <side_lengths> (2.4, 1.2) </side_lengths>
 </domain>

 <settings>
 <verbose> True </verbose>
 <mesh_min_angle> 20 </mesh_min_angle>
 <mesh_max_edge_length> 0.01 </mesh_max_edge_length>
 <mesh_max_volume> 0.004 </mesh_max_volume>

 <directory> elliptical_grains </directory>
 <plot_axes> False </plot_axes>

 <seeds_kwargs>
 <linewidth> 1.0 </linewidth>
 </seeds_kwargs>

 <poly_kwargs>
 <linewidth> 1.0 </linewidth>
 </poly_kwargs>

 <tri_kwargs>
 <linewidth> 0.1 </linewidth>
 </tri_kwargs>
 </settings>
</input>

Materials

There are five materials, represented in equal proportions.
The first material consists of ellipses and the semi-major axes are
uniformly distributed, \(A \sim U(0.20, 0.75)\).
The semi-minor axes are fixed at 0.05, meaning the aspect ratio of these
seeds are 4-15.
The orientation angles of the ellipses are uniform random in distribution from
0 to 20 degrees counterclockwise from the +x axis.

The remaining four materials are all the same, with lognormal grain area
distributions.
The only difference among these materials is the color, which was done for
visual effect.

Domain Geometry

The domain of the microstructure is a rectangle with side lengths 2.4 in the
x-direction and 1.2 in the y-direction.
The domain is centered on the origin, though the position of the domain is
not relevant considering that the plot axes are switched off.

Settings

The aspect ratio of elements in the triangular mesh is controlled
by setting the minimum interior angle for the elements at 20 degrees,
the maximum element volume to 0.001, and the maximum edge length at grain
boundaries to 0.01.

The function will output only plots of the microstructure process
(no text files), and those plots are saved as PNGs.
They are saved in a folder named elliptical_grains, in the current directory
(i.e ./elliptical_grains).

The axes are turned off in these plots, creating PNG files with
minimal whitespace.

Finally, the linewiths in the seeds plot, polygonal mesh plot, and the
triangular mesh plot are 0.5, 0.5, 0.1 respectively.

Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 4 -
Fig. 6.

[image: Seed geometries.]
Fig. 4 Elliptical grain example - seed geometries.

[image: Polygonal mesh.]
Fig. 5 Elliptical grain example - polygonal mesh.

[image: Triangular mesh.]
Fig. 6 Elliptical grain example - triangular mesh.

Minimal Example

XML Input File

The basename for this file is minimal_paired.xml.
The file can be run using this command:

microstructpy --demo=minimal_paired.xml

The full text of the file is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size> 0.09 </size>
 </material>

 <domain>
 <shape> square </shape>
 </domain>

 <settings>
 <directory> minimal </directory>
 <plot_axes> False </plot_axes>
 <color_by> seed number </color_by>
 <colormap> Paired </colormap>
 </settings>
</input>

Material

There is only one material, with a constant size of 0.09.

Domain Geometry

The material fills a square domain.
The default side length is 1, meaning the domain is greater than 10x larger
than the grains.

Settings

The function will output plots of the microstructure process and those plots
are saved as PNGs.
They are saved in a folder named minimal, in the current directory
(i.e ./minimal).

The axes are turned off in these plots, creating PNG files with
minimal whitespace.

Finally, the seeds and grains are colored by their seed number, not by
material.

Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 7 -
Fig. 9.

[image: Seed geometries.]
Fig. 7 Minimal example - seed geometries.

[image: Polygonal mesh.]
Fig. 8 Minimal example - polygonal mesh.

[image: Triangular mesh.]
Fig. 9 Minimal example - triangular mesh.

Picritic Basalt

XML Input File

The basename for this file is basalt_circle.xml.
The file can be run using this command:

microstructpy --demo=basalt_circle.xml

The full text of the file is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <name> Plagioclase </name>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 45.2 </loc>
 <scale> 0.2 </scale>
 </fraction>
 <size>
 <dist_type> cdf </dist_type>
 <filename> aphanitic_cdf.csv </filename>
 </size>
 <color> #BDBDBD </color>
 </material>

 <material>
 <name> Olivine </name>
 <shape> ellipse </shape>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 19.1 </loc>
 <scale> 0.2 </scale>
 </fraction>
 <size>
 <dist_type> cdf </dist_type>
 <filename> olivine_cdf.csv </filename>
 </size>
 <aspect_ratio>
 <dist_type> uniform </dist_type>
 <loc> 1.0 </loc>
 <scale> 2.0 </scale>
 </aspect_ratio>
 <angle_deg>
 <dist_type> uniform </dist_type>
 <loc> -90 </loc>
 <scale> 180 </scale>
 </angle_deg>
 <color> #99BA73 </color>
 </material>

 <material>
 <name> Diopside </name>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 13.2 </loc>
 <scale> 0.2 </scale>
 </fraction>
 <size>
 <dist_type> cdf </dist_type>
 <filename> aphanitic_cdf.csv </filename>
 </size>
 <color> #709642 </color>
 </material>

 <material>
 <name> Hypersthene </name>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 16.6 </loc>
 <scale> 0.2 </scale>
 </fraction>
 <size>
 <dist_type> cdf </dist_type>
 <filename> aphanitic_cdf.csv </filename>
 </size>
 <color> #876E59 </color>
 </material>

 <material>
 <name> Magnetite </name>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 3.35 </loc>
 <scale> 0.2 </scale>
 </fraction>
 <size>
 <dist_type> cdf </dist_type>
 <filename> aphanitic_cdf.csv </filename>
 </size>
 <color> #6E6E6E </color>
 </material>

 <material>
 <name> Chromite </name>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 0.65 </loc>
 <scale> 0.2 </scale>
 </fraction>
 <size>
 <dist_type> cdf </dist_type>
 <filename> aphanitic_cdf.csv </filename>\
 </size>
 <color> #545454 </color>
 </material>

 <material>
 <name> Ilmenite </name>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 0.65 </loc>
 <scale> 0.2 </scale>
 </fraction>
 <size>
 <dist_type> cdf </dist_type>
 <filename> aphanitic_cdf.csv </filename>
 </size>
 <color> #6B6B6B </color>
 </material>

 <material>
 <name> Apatite </name>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 3.35 </loc>
 <scale> 0.2 </scale>
 </fraction>

 <size>
 <dist_type> cdf </dist_type>
 <filename> aphanitic_cdf.csv </filename>
 </size>
 <color> #ABA687 </color>
 </material>

 <domain>
 <shape> circle </shape>
 <diameter> 10 </diameter>
 </domain>

 <settings>
 <directory> basalt_circle </directory>
 <filetypes>
 <seeds_plot> png </seeds_plot>
 <poly_plot> png </poly_plot>
 <tri_plot> png </tri_plot>
 <verify_plot> png </verify_plot>
 </filetypes>

 <plot_axes> False </plot_axes>
 <verbose> True </verbose>
 <verify> True </verify>

 <mesh_max_edge_length> 0.01 </mesh_max_edge_length>
 <mesh_min_angle> 20 </mesh_min_angle>
 <mesh_max_volume> 0.05 </mesh_max_volume>

 <seeds_kwargs>
 <linewidths> 0.2 </linewidths>
 </seeds_kwargs>
 <poly_kwargs>
 <linewidths> 0.2 </linewidths>
 </poly_kwargs>
 <tri_kwargs>
 <linewidths> 0.1 </linewidths>
 </tri_kwargs>
 </settings>
</input>

Material 1 - Plagioclase

Plagioclase composes approximately 45% of this picritic basalt sample.
It is an aphanitic component, meaning fine-grained, and follows a custom
size distribution.

Material 2 - Olivine

Olivine composes approximately 19% of this picritic basalt sample.
There are large phenocrysts of olivine in picritic basalt, so the crystals
are generally larger than the other components and have a non-circular shape.
The orientation of the phenocrysts is uniform random, with the aspect ratio
varying from 1 to 3 uniformly.

Materials 3-8

Diopside, hypersthene, magnetite, chromite, ilmenite, and apatie compose
approximately 36% of this picritic basalt sample.
They are aphanitic components, meaning fine-grained, and follow a custom
size distribution.

Domain Geometry

These materials fill a circular domain with a diameter of 30 mm.

Settings

The function will output plots of the microstructure process and those plots
are saved as PNGs.
They are saved in a folder named basalt_circle, in the current directory
(i.e ./basalt_circle).

The axes are turned off in these plots, creating PNG files with
minimal whitespace.

Mesh controls are introducted to increase grid resolution, particularly at the
grain boundaries.

Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in
Fig. 10 - Fig. 12.

[image: Seed geometries.]
Fig. 10 Picritic basalt example - seed geometries

[image: Polygonal mesh.]
Fig. 11 Picritic basalt example - polygonal mesh

[image: Triangular mesh.]
Fig. 12 Picritic basalt example - triangular mesh

With the <verification> flag set to True, verification plots are
generated by MicroStructPy.
The grain size distribution comparison is given in Fig. 13.

[image: Comparing input and output CSDs.]
Fig. 13 Picritic basalt example - input and output crystal size
distributions (CSDs).

Comparing the input and output distributions for olivine, it is clear that this
microstructure is not statistically representative.
A larger diameter for the domain would contain more grains of olivine, which
would add more fidelity to the size CDF curve.

Two Phase 3D Example

XML Input File

The basename for this file is two_phase_3D.xml.
The file can be run using this command:

microstructpy --demo=two_phase_3D.xml

The full text of the file is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <fraction> 1 </fraction>
 <volume>
 <dist_type> lognorm </dist_type>
 <scale> 1 </scale>
 <s> 0.95 </s>
 </volume>
 <shape> sphere </shape>
 <name> Phase 1 </name>
 </material>

 <material>
 <fraction> 3 </fraction>
 <volume>
 <dist_type> lognorm </dist_type>
 <scale> 0.5 </scale>
 <s> 1.01 </s>
 </volume>
 <name> Phase 2 </name>
 </material>

 <domain>
 <shape> cube </shape>
 <side_length> 7 </side_length>
 <corner> (0, 0, 0) </corner>
 </domain>

 <settings>
 <directory> two_phase_3D </directory>
 <verbose> True </verbose>

 <seeds_kwargs>
 <linewidths> 0.2 </linewidths>
 </seeds_kwargs>
 <poly_kwargs>
 <linewidths> 0.2 </linewidths>
 </poly_kwargs>
 <tri_kwargs>
 <linewidths> 0.2 </linewidths>
 </tri_kwargs>
 </settings>
</input>

Materials

The first material makes up 25% of the volume, with a lognormal grain volume
distribution.

The second material makes up 75% of the volume, with an independent grain
volume distribution.

Domain Geometry

These two materials fill a cube domain of side length 7.

Settings

The function will output plots of the microstructure process and those plots
are saved as PNGs.
They are saved in a folder named two_phase_3D, in the current directory
(i.e ./two_phase_3D).

The line width of the output plots is reduced to 0.2, to make them more
visible.

Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 14 -
Fig. 16.

[image: Seed geometries.]
Fig. 14 Two phase 3D example - seed geometries.

[image: Polygonal mesh.]
Fig. 15 Two phase 3D example - polygonal mesh.

[image: Triangular mesh.]
Fig. 16 Two phase 3D example - triangular mesh.

Colormap

In this example, a 3D microstructure is generated with grains colored by their
seed number, rather than the material.

XML Input File

The basename for this input file is colormap.xml.
The file can be run using this command:

microstructpy --demo=colormap.xml

The full text of the script is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> sphere </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 1 </loc>
 <scale> 2 </scale>
 </size>
 </material>

 <domain>
 <shape> cube </shape>
 <side_length> 15 </side_length>
 </domain>

 <settings>
 <directory> colormap </directory>
 <mesh_min_angle> 15 </mesh_min_angle>
 <color_by> seed number </color_by>
 <colormap> RdYlBu </colormap>
 </settings>
</input>

Materials

There is a single material with grain sizes ranging from 1 to 3 on a
uniform distribution.

Domain

The domain of the microstructure is a Cube.
The cube’s center is at the origin and its side length is 15.

Settings

The output directory is ./colormap, which contains the text files
and PNG plots of the microstructure.
The minimum dihedral angle for the mesh elements is set to 15 degrees to
ensure mesh quality.

The <color_by> option indicates how to color seeds in the output plots.
There are three values available for this option: “material”, “seed number”,
and “material number”.
The “material” value will use colors specified in each <material> field.
The “seed number” value will use the seed numbers as values for a colormap.
Similarly, “material number” will use the material number in a colormap.

The <colormap> option indicates which colormap should be used in the output
plot.
The default colormap is “viridis”, which is also the default for matplotlib.
A complete listing of available colormaps is available on the matplotlib
Choosing Colormaps in Matplotlib [https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html] webpage.

Output Files

The three plots that this file generates are the seeding, the polygon mesh,
and the triangular mesh.
These three plots are shown in Fig. 17 -
Fig. 19.

[image: Seed geometries.]
Fig. 17 Colormap example - seed geometries.

[image: Polygonal mesh.]
Fig. 18 Colormap example - polygonal mesh.

[image: Triangular mesh.]
Fig. 19 Colormap example - triangular mesh.

Standard Voronoi Diagram

Python Script

The basename for this file is standard_voronoi.py.
The file can be run using this command:

microstructpy --demo=standard_voronoi.py

The full text of the script is:

import os

from matplotlib import pyplot as plt

import microstructpy as msp

Create domain
domain = msp.geometry.Square()

Create list of seed points
factory = msp.seeding.Seed.factory
n = 50
seeds = msp.seeding.SeedList([factory('circle', r=0.01) for i in range(n)])
seeds.position(domain)

Create Voronoi diagram
pmesh = msp.meshing.PolyMesh.from_seeds(seeds, domain)

Plot Voronoi diagram and seed points
pmesh.plot(edgecolors='k', facecolors='gray')
seeds.plot(edgecolors='k', facecolors='none')

plt.axis('square')
plt.xlim(domain.limits[0])
plt.ylim(domain.limits[1])

file_dir = os.path.dirname(os.path.realpath(__file__))
filename = os.path.join(file_dir, 'standard_voronoi/voronoi_diagram.png')
dirs = os.path.dirname(filename)
if not os.path.exists(dirs):
 os.makedirs(dirs)
plt.savefig(filename, bbox_inches='tight', pad_inches=0)

Domain

The domain of the microstructure is a Square.
Without arguments, the square’s center is (0, 0) and side length is 1.

Seeds

A set of 50 seed circles with small radius is initially created.
Calling the position() method
positions the points according to random uniform distributions in the domain.

Polygon Mesh

A polygon mesh is created from the list of seed points using the
from_seeds() class method.
The mesh is plotted and saved into a PNG file in the remaining lines of the
script.

Plotting

The output Voronoi diagram is plotted in Fig. 20.

[image: ../../_images/voronoi_diagram2.png]
Fig. 20 Standard Voronoi diagram.

Uniform Seeding Voronoi Diagram

Python Script

The basename for this file is uniform_seeding.py.
The file can be run using this command:

microstructpy --demo=uniform_seeding.py

The full text of the script is:

from __future__ import division

import os

import matplotlib as mpl
import numpy as np
from matplotlib import pyplot as plt
from scipy.spatial import distance

import microstructpy as msp

Create domain
domain = msp.geometry.Square(corner=(0, 0))

Create list of seed points
factory = msp.seeding.Seed.factory
n = 200
seeds = msp.seeding.SeedList([factory('circle', r=0.007) for i in range(n)])

Position seeds according to Mitchell's Best Candidate Algorithm
np.random.seed(0)

lims = np.array(domain.limits) * (1 - 1e-5)
centers = np.zeros((n, 2))

for i in range(n):
 f = np.random.rand(i + 1, 2)
 pts = f * lims[:, 0] + (1 - f) * lims[:, 1]
 try:
 min_dists = distance.cdist(pts, centers[:i]).min(axis=1)
 i_max = np.argmax(min_dists)
 except ValueError: # this is the case when i=0
 i_max = 0
 centers[i] = pts[i_max]
 seeds[i].position = centers[i]

Create Voronoi diagram
pmesh = msp.meshing.PolyMesh.from_seeds(seeds, domain)

Set colors based on area
areas = pmesh.volumes
std_area = domain.area / n
min_area = min(areas)
max_area = max(areas)
cell_colors = np.zeros((n, 3))
for i in range(n):
 if areas[i] < std_area:
 f_red = (areas[i] - min_area) / (std_area - min_area)
 f_green = (areas[i] - min_area) / (std_area - min_area)
 f_blue = 1
 else:
 f_red = 1
 f_green = (max_area - areas[i]) / (max_area - std_area)
 f_blue = (max_area - areas[i]) / (max_area - std_area)
 cell_colors[i] = (f_red, f_green, f_blue)

Create colorbar
vs = (std_area - min_area) / (max_area - min_area)
colors = [(0, (0, 0, 1)), (vs, (1, 1, 1)), (1, (1, 0, 0))]
cmap = mpl.colors.LinearSegmentedColormap.from_list('area_cmap', colors)
norm = mpl.colors.Normalize(vmin=min_area, vmax=max_area)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array([])
cb = plt.colorbar(sm, ticks=[min_area, std_area, max_area],
 orientation='horizontal', fraction=0.046, pad=0.08)
cb.set_label('Cell Area')

Plot Voronoi diagram and seed points
pmesh.plot(edgecolors='k', facecolors=cell_colors)
seeds.plot(edgecolors='k', facecolors='none')

plt.axis('square')
plt.xlim(domain.limits[0])
plt.ylim(domain.limits[1])

Save diagram
file_dir = os.path.dirname(os.path.realpath(__file__))
filename = os.path.join(file_dir, 'uniform_seeding/voronoi_diagram.png')
dirs = os.path.dirname(filename)
if not os.path.exists(dirs):
 os.makedirs(dirs)
plt.savefig(filename, bbox_inches='tight', pad_inches=0)

Domain

The domain of the microstructure is a Square.
Without arguments, the square’s center is (0, 0) and side length is 1.

Seeds

A set of 200 seed circles with small radius is initially created.
The positions of the seeds are set with Mitchell’s Best Candidate Algorithm
1. This algorithm positions seed i by sampling i + 1
random points and picking the one that is furthest from its nearest neighbor.

Polygon Mesh

A polygon mesh is created from the list of seed points using the
from_seeds() class method.

Plotting

The facecolor of each polygon is determined by its area. If it is below the
standard area (domain area / number of cells), then it is shaded blue. If
it is above the standard area, it is shaded red. A custom colorbar is added
to the figure and it is saved as a PNG, shown in Fig. 21.

[image: Voronoi diagram with uniformly-spaced seeds, colored by area.]
Fig. 21 Uniformly seeded Voronoi diagram with cells colored by area.

	1

	Mitchell, T.J., “An Algorithm for the Construction of “D-Optimal”
Experimental Designs,” Technometrics, Vol. 16, No. 2, May 1974, pp. 203-210.
(https://www.jstor.org/stable/1267940)

Foam

In this example, a foam microstructure is generated by first tesselating the
voids, then adding foam material to the edges between the voids.

Python Script

The basename for this file is foam.py.
The file can be run using this command:

microstructpy --demo=foam.py

The full text of the script is:

import os

import numpy as np
import scipy.stats
from matplotlib import pyplot as plt

import microstructpy as msp

def main():
 # Create Directory
 dirname = os.path.join(os.path.dirname(__file__), 'foam')
 if not os.path.exists(dirname):
 os.makedirs(dirname)

 # Define Domain
 domain = msp.geometry.Square(side_length=8)

 # Create Void Tessellation
 void_mat = {'material_type': 'void',
 'shape': 'circle',
 'size': scipy.stats.lognorm(scale=1, s=0.2)
 }

 void_a = 0.7 * domain.area
 void_seeds = msp.seeding.SeedList.from_info(void_mat, void_a)
 void_seeds.position(domain, rtol=0.03, verbose=True)
 void_tess = msp.meshing.PolyMesh.from_seeds(void_seeds, domain)

 # Add Foam
 foam_mat = {'material_type': 'amorphous',
 'shape': 'circle',
 'size': scipy.stats.lognorm(scale=0.15, s=0.1)
 }

 foam_a = 0.15 * domain.area
 foam_seeds = msp.seeding.SeedList.from_info(foam_mat, foam_a)
 inds = np.flip(np.argsort([s.volume for s in foam_seeds]))
 foam_seeds = foam_seeds[inds]

 bkdwns = np.array([s.breakdown[0] for s in foam_seeds])
 np.random.seed(0)
 for i, seed in enumerate(foam_seeds):
 if i == 0:
 trial_pt = trial_position(void_tess)
 else:
 r = seed.geometry.r
 check_bkdwns = bkdwns[:i]
 good_pt = False
 while not good_pt:
 trial_pt = trial_position(void_tess)
 good_pt = check_pt(trial_pt, r, check_bkdwns)

 seed.position = trial_pt
 bkdwns[i] = seed.breakdown
 seed.phase = 1

 # Combine Results
 materials = [void_mat, foam_mat]
 seeds = void_seeds + foam_seeds
 pmesh = msp.meshing.PolyMesh.from_seeds(seeds, domain)

 # Triangular Mesh
 tmesh = msp.meshing.TriMesh.from_polymesh(pmesh,
 materials,
 min_angle=20,
 max_edge_length=0.1)

 # Plot
 tmesh.plot(facecolor='aquamarine',
 edgecolor='k',
 linewidth=0.2)

 plt.gca().set_position([0, 0, 1, 1])
 plt.axis('image')
 plt.gca().set_axis_off()
 plt.gca().get_xaxis().set_visible(False)
 plt.gca().get_yaxis().set_visible(False)

 xlim, ylim = domain.limits
 plt.axis([xlim[0], xlim[1], ylim[0], ylim[1]])

 for ext in ['png', 'pdf']:
 fname = os.path.join(dirname, 'trimesh.' + ext)
 plt.savefig(fname, bbox_inches='tight', pad_inches=0)

def pick_edge(void_tess):
 f_neighs = void_tess.facet_neighbors
 i = -1
 neighs = [-1, -1]
 while any([n < 0 for n in neighs]):
 i = np.random.randint(len(f_neighs))
 neighs = f_neighs[i]
 facet = void_tess.facets[i]
 j = np.random.randint(len(facet))
 kp1 = facet[j]
 kp2 = facet[j - 1]
 return kp1, kp2

def trial_position(void_tess):
 kp1, kp2 = pick_edge(void_tess)
 pt1 = void_tess.points[kp1]
 pt2 = void_tess.points[kp2]

 f = np.random.rand()
 return [f * x1 + (1 - f) * x2 for x1, x2 in zip(pt1, pt2)]

def check_pt(point, r, breakdowns):
 pts = breakdowns[:, :-1]
 rads = breakdowns[:, -1]

 rel_pos = pts - point
 dist = np.sqrt(np.sum(rel_pos * rel_pos, axis=1))
 min_dist = rads + r - 0.3 * np.minimum(rads, r)
 return np.all(dist > min_dist)

if __name__ == '__main__':
 main()

Domain

The domain of the microstructure is a Square.
Without arguments, the square’s center is (0, 0) and side length is 15.

Seeds

Initially, the seed list is entirely voids following a lognormal size
distribution.
These are then tessellated to determine the boundaries between the voids.
These voids are generated to fill 70% of the domain and are positioned with
a custom rtol value of 3%.
This ensures that most of the voids do not connect with each other and that
the foam seeds positioned along the edges do not become consumed by the void
cells.

Next, foam seeds are added to the edges between voids.
These seeds are given a size distribution, however there are no foam grains
since the material is amorphous.
Once the foam seeds are positioned in the domain, the lists of void and foam
seeds are combined into a single seed list.

Polygon Mesh

A polygon mesh is created from the list of seed points using the
from_seeds() class method.

Triangular Mesh

A triangular mesh is created from the polygonal mesh using the
from_polymesh() class method.
The optional phases parameter is used in this case since the mesh contains
non-crystalline materials.
Additionally, the minimum interior angle of the mesh elements is set to 20 to
ensure good mesh quality and the maximum edge length is set to increase mesh
resolution near the voids.

Plotting

The triangular mesh in this example is plotted in aquamarine, one of
several named colors in matplotlib.
Next, the axes are turned off and the limits are set to equal the bounds of
the domain.
Finally, the triangular mesh is saved as a PNG and as a PDF, with the
resulting plot shown in Fig. 22.

[image: ../../_images/trimesh23.png]
Fig. 22 Foam example - triangular mesh.

MicroStructPy Logo

Python Script

The basename for this file is logo.py.
The file can be run using this command:

microstructpy --demo=logo.py

The full text of the script is:

from __future__ import division

import os

import numpy as np
from matplotlib import collections
from matplotlib import pyplot as plt
from matplotlib.offsetbox import AnnotationBbox
from matplotlib.offsetbox import OffsetImage

import microstructpy as msp

def main(n_seeds, size_rng, pos_rng, k_lw):
 bkgrnd_color = 'black'
 line_color = (1, 1, 1, 1) # white

 dpi = 300
 init_size = 2000
 logo_size = 1500
 favicon_size = 48

 logo_basename = 'logo.svg'
 favicon_basename = 'favicon.ico'
 social_basename = 'social.png'
 file_dir = os.path.dirname(os.path.realpath(__file__))
 path = os.path.join(file_dir, 'logo')
 if not os.path.exists(path):
 os.makedirs(path)
 print(path)
 logo_filename = os.path.join(path, logo_basename)
 pad_filename = os.path.join(path, 'pad_' + logo_basename)
 favicon_filename = os.path.join(path, favicon_basename)
 social_filename = os.path.join(path, social_basename)

 # Set Domain
 domain = msp.geometry.Circle()

 # Set Seed List
 np.random.seed(size_rng)
 rs = 0.3 * np.random.rand(n_seeds)

 factory = msp.seeding.Seed.factory
 seeds = msp.seeding.SeedList([factory('circle', r=r) for r in rs])
 seeds.position(domain, rng_seed=pos_rng)

 # Create the Poly Mesh
 pmesh = msp.meshing.PolyMesh.from_seeds(seeds, domain)

 # Create and Format the Figure
 plt.clf()
 plt.close('all')
 fig = plt.figure(figsize=(init_size / dpi, init_size / dpi), dpi=dpi)
 ax = plt.Axes(fig, [0., 0., 1., 1.])
 ax.set_axis_off()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 fig.add_axes(ax)

 # Plot the Domain
 domain.plot(ec='none', fc=bkgrnd_color)

 # Plot the Facets
 facet_colors = []
 for neigh_pair in pmesh.facet_neighbors:
 if min(neigh_pair) < 0:
 facet_colors.append('none')
 else:
 facet_colors.append(line_color)

 lw = k_lw * init_size / 100
 pmesh.plot_facets(index_by='facet', colors=facet_colors,
 linewidth=lw, capstyle='round')

 pts = np.array(pmesh.points)
 rs = np.sqrt(np.sum(pts * pts, axis=1))
 mask = np.isclose(rs, 1)

 edges = []
 for facet in pmesh.facets:
 if np.sum(mask[facet]) != 1:
 continue

 edge = np.copy(pts[facet])
 if mask[facet[0]]:
 u = edge[0] - edge[1]
 u *= 1.1
 edge[0] = edge[1] + u
 else:
 u = edge[1] - edge[0]
 u *= 1.1
 edge[1] = edge[0] + u
 edges.append(edge)

 pc = collections.LineCollection(edges, color=line_color, linewidth=lw,
 capstyle='round')
 ax.add_collection(pc)

 # Format the Plot and Convert to Image Array
 plt.axis('square')
 plt.axis(1.01 * np.array([-1, 1, -1, 1]))
 fig.canvas.draw()

 plt_im = np.array(fig.canvas.get_renderer()._renderer)
 mask = plt_im[:, :, 0] > 0.5 * 255

 # Create the Logo
 logo_im = np.copy(plt_im)

 xx, yy = np.meshgrid(*[np.arange(n) for n in logo_im.shape[:2]])
 zz = - 0.2 * xx + 0.9 * yy
 ss = (zz - zz.min()) / (zz.max() - zz.min())

 c1 = [67, 206, 162]
 c2 = [24, 90, 157]

 logo_im[mask, -1] = 0 # transparent background

 # gradient
 for i in range(logo_im.shape[-1] - 1):
 logo_im[~mask, i] = (1 - ss[~mask]) * c1[i] + ss[~mask] * c2[i]

 inds = np.linspace(0, logo_im.shape[0] - 1, logo_size).astype('int')
 logo_im = logo_im[inds]
 logo_im = logo_im[:, inds]

 pad_w = logo_im.shape[0]
 pad_h = 0.5 * logo_im.shape[1]
 pad_shape = np.array([pad_w, pad_h, logo_im.shape[2]]).astype('int')
 logo_pad = np.zeros(pad_shape, dtype=logo_im.dtype)
 pad_im = np.concatenate((logo_pad, logo_im, logo_pad), axis=1)
 doc_im = np.concatenate((logo_pad, pad_im, logo_pad), axis=1)

 plt.imsave(logo_filename, logo_im, dpi=dpi)
 plt.imsave(logo_filename.replace('.svg', '.png'), logo_im, dpi=dpi)
 plt.imsave(pad_filename, pad_im, dpi=dpi)
 plt.imsave(pad_filename.replace('.svg', '.png'), doc_im, dpi=dpi)

 # Create the Favicon
 fav_im = np.copy(logo_im)
 inds = np.linspace(0, fav_im.shape[0] - 1, favicon_size).astype('int')
 fav_im = fav_im[inds]
 fav_im = fav_im[:, inds]

 plt.imsave(favicon_filename, fav_im, dpi=dpi, format='png')

 # Create the Social Banner
 fig_social, ax_social = plt.subplots()

 ax_social.set_xlim(0, 2)
 ax_social.set_ylim(0, 1)
 ax_social.set_aspect('equal')

 ax_social.set_axis_off()
 ax_social.get_xaxis().set_visible(False)
 ax_social.get_yaxis().set_visible(False)

 imagebox = OffsetImage(logo_im, zoom=0.05)
 ab = AnnotationBbox(imagebox, (1, 0.7), frameon=False)
 ax_social.add_artist(ab)
 ax_social.text(1, 0.35, 'MicroStructPy',
 fontsize=20,
 weight='bold',
 horizontalalignment='center',
 verticalalignment='center')
 ax_social.text(1, 0.23, 'Microstructure Mesh Generation in Python',
 fontsize=10,
 horizontalalignment='center',
 verticalalignment='center')
 plt.draw()
 plt.savefig(social_filename, bbox_inches='tight')
 plt.close('all')

if __name__ == '__main__':
 n_seeds = 14
 size_rng = 4
 pos_rng = 7
 k_lw = 1.1

 main(n_seeds, size_rng, pos_rng, k_lw)

Domain

The domain of the microstructure is a Circle.
Without arguments, the circle’s center is (0, 0) and side length is 1.

Seeds

The seeds are 14 circles with radii uniformly distributed from 0 to 0.3.
Calling the position() method
positions the points according to random uniform distributions in the domain.

Polygon Mesh

A polygon mesh is created from the list of seed points using the
from_seeds() class method.
The mesh is plotted and saved into a PNG file in the remaining lines of the
script.

Plot Logo

The edges in the polygonal mesh are plotted white on a black background.
This image is converted into a mask and the white pixels are converted into
transparent pixels.
The remaining pixels are colored with a linear gradient between two colors.
This image is saved in padded and tight versions, as well as a favicon for the
HTML documentation.
The logo that results is shown in Fig. 23.

[image: MicroStructPy logo.]
Fig. 23 MicroStructPy logo.

Grain Neighborhoods

Python Script

The basename for this file is grain_neighborhoods.py.
The file can be run using this command:

microstructpy --demo=grain_neighborhoods.py

The full text of the script is:

from __future__ import division

import os

import numpy as np
import scipy.integrate
import scipy.stats
from matplotlib import pyplot as plt

import microstructpy as msp

Define the domain
domain = msp.geometry.Square(corner=(0, 0), side_length=10)

Define the material phases
a_dist = scipy.stats.lognorm(s=1, scale=0.1)
matrix_phase = {'fraction': 1,
 'material_type': 'matrix',
 'shape': 'circle',
 'area': a_dist}

neighborhood_phase = {'fraction': 1,
 'material_type': 'solid',
 'shape': 'ellipse',
 'a': 1.5,
 'b': 0.6,
 'angle_deg': scipy.stats.uniform(0, 360)}

phases = [matrix_phase, neighborhood_phase]

Create the seed list
seeds = msp.seeding.SeedList.from_info(phases, domain.area)
seeds.position(domain)

Replace the neighborhood phase with materials
a = neighborhood_phase['a']
b = neighborhood_phase['b']
r = b / 3
n = 16

t_perim = np.linspace(0, 2 * np.pi, 201)
x_perim = (a - r) * np.cos(t_perim)
y_perim = (b - r) * np.sin(t_perim)
dx = np.insert(np.diff(x_perim), 0, 0)
dy = np.insert(np.diff(y_perim), 0, 0)
ds = np.sqrt(dx * dx + dy * dy)
arc_len = scipy.integrate.cumtrapz(ds, x=t_perim, initial=0)
eq_spaced = arc_len[-1] * np.arange(n) / n
x_pts = np.interp(eq_spaced, arc_len, x_perim)
y_pts = np.interp(eq_spaced, arc_len, y_perim)

repl_seeds = msp.seeding.SeedList()
geom = {'a': a - 2 * r, 'b': b - 2 * r}
for sn, seed in enumerate(seeds):
 if seed.phase == 0:
 repl_seeds.append(seed)
 else:
 center = seed.position
 theta = seed.geometry.angle_rad

 geom['angle_rad'] = theta
 geom['center'] = center
 core_seed = msp.seeding.Seed.factory('ellipse', phase=3,
 position=seed.position, **geom)
 repl_seeds.append(core_seed)

 x_ring = center[0] + x_pts * np.cos(theta) - y_pts * np.sin(theta)
 y_ring = center[1] + x_pts * np.sin(theta) + y_pts * np.cos(theta)
 for i in range(n):
 phase = 1 + (i % 2)
 center = (x_ring[i], y_ring[i])
 ring_geom = {'center': center, 'r': r}
 ring_seed = msp.seeding.Seed.factory('circle', position=center,
 phase=phase, **ring_geom)
 if domain.within(center):
 repl_seeds.append(ring_seed)

Create polygon and triangle meshes
pmesh = msp.meshing.PolyMesh.from_seeds(repl_seeds, domain)
phases = [{'material_type': 'solid'} for i in range(4)]
phases[0]['material_type'] = 'matrix'
tmesh = msp.meshing.TriMesh.from_polymesh(pmesh, phases, min_angle=20,
 max_volume=0.1)

Plot triangle mesh
colors = ['C' + str(repl_seeds[att].phase) for att in tmesh.element_attributes]
tmesh.plot(facecolors=colors, edgecolors='k', linewidth=0.2)

plt.axis('square')
plt.xlim(domain.limits[0])
plt.ylim(domain.limits[1])

file_dir = os.path.dirname(os.path.realpath(__file__))
filename = os.path.join(file_dir, 'grain_neighborhoods/trimesh.png')
dirs = os.path.dirname(filename)
if not os.path.exists(dirs):
 os.makedirs(dirs)
plt.savefig(filename, bbox_inches='tight', pad_inches=0)

Domain

The domain of the microstructure is a
microstructpy.geometry.Rectangle, with the bottom left corner at the
origin and side lengths of 8 and 12.

Phases

There are initially two phases: a matrix phase and a neighborhood phase.
The neighborhood phase will be broken down into materials later. The matrix
phase occupies two thirds of the domain, while the neighborhoods occupy one
third.

Seeds

The seeds are generated to fill 1.1x the area of the domain, to account for
overlap with the boundaries. They are positioned according to random uniform
distributions.

Neighborhood Replacement

The neighborhood seeds are replaced by a set of three different materials.
One material occupies the center of the neighborhood, while the other two
alternate in a ring around the center.

Polygon and Triangle Meshing

The seeds are converted into a triangular mesh by first constructing a
polygon mesh. Each material is solid, except for the first which is designated
as a matrix phase. Mesh quality controls are specified to prevent high aspect
ratio triangles.

Plotting

The triangular mesh is plotted and saved to a file.
Each triangle is colored based on its material phase, using the standard
matplotlib colors: C0, C1, C2, etc.
The output PNG file is shown in Fig. 24.

[image: Triangular mesh of microstructure with seed neighborhoods.]
Fig. 24 Triangular mesh of microstructure with seed neighborhoods.

Microstructure from Image

Note

The open source and freely available software package OOF is better equiped
to create unstructured meshes from images.

https://www.ctcms.nist.gov/oof/

Python Script

The basename for this file is from_image.py.
The file can be run using this command:

microstructpy --demo=from_image.py

The full text of the script is:

import os
import shutil

import numpy as np
from matplotlib import image as mpim
from matplotlib import pyplot as plt

import microstructpy as msp

Read in image
image_basename = 'aluminum_micro.png'
image_path = os.path.dirname(__file__)
image_filename = os.path.join(image_path, image_basename)
image = mpim.imread(image_filename)
im_brightness = image[:, :, 0]

Bin the pixels
br_bins = [0.00, 0.50, 1.00]

bin_nums = np.zeros_like(im_brightness, dtype='int')
for i in range(len(br_bins) - 1):
 lb = br_bins[i]
 ub = br_bins[i + 1]
 mask = np.logical_and(im_brightness >= lb, im_brightness <= ub)
 bin_nums[mask] = i

Define the phases
phases = [{'color': c, 'material_type': 'amorphous'} for c in ('C0', 'C1')]

Create the polygon mesh
m, n = bin_nums.shape
x = np.arange(n + 1).astype('float')
y = m + 1 - np.arange(m + 1).astype('float')
xx, yy = np.meshgrid(x, y)
pts = np.array([xx.flatten(), yy.flatten()]).T
kps = np.arange(len(pts)).reshape(xx.shape)

n_facets = 2 * (m + m * n + n)
n_regions = m * n
facets = np.full((n_facets, 2), -1)
regions = np.full((n_regions, 4), 0)
region_phases = np.full(n_regions, 0)

facet_top = np.full((m, n), -1, dtype='int')
facet_bottom = np.full((m, n), -1, dtype='int')
facet_left = np.full((m, n), -1, dtype='int')
facet_right = np.full((m, n), -1, dtype='int')

k_facets = 0
k_regions = 0
for i in range(m):
 for j in range(n):
 kp_top_left = kps[i, j]
 kp_bottom_left = kps[i + 1, j]
 kp_top_right = kps[i, j + 1]
 kp_bottom_right = kps[i + 1, j + 1]

 # left facet
 if facet_left[i, j] < 0:
 fnum_left = k_facets
 facets[fnum_left] = (kp_top_left, kp_bottom_left)
 k_facets += 1

 if j > 0:
 facet_right[i, j - 1] = fnum_left
 else:
 fnum_left = facet_left[i, j]

 # right facet
 if facet_right[i, j] < 0:
 fnum_right = k_facets
 facets[fnum_right] = (kp_top_right, kp_bottom_right)
 k_facets += 1

 if j + 1 < n:
 facet_left[i, j + 1] = fnum_right
 else:
 fnum_right = facet_right[i, j]

 # top facet
 if facet_top[i, j] < 0:
 fnum_top = k_facets
 facets[fnum_top] = (kp_top_left, kp_top_right)
 k_facets += 1

 if i > 0:
 facet_bottom[i - 1, j] = fnum_top
 else:
 fnum_top = facet_top[i, j]

 # bottom facet
 if facet_bottom[i, j] < 0:
 fnum_bottom = k_facets
 facets[fnum_bottom] = (kp_bottom_left, kp_bottom_right)
 k_facets += 1

 if i + 1 < m:
 facet_top[i + 1, j] = fnum_bottom
 else:
 fnum_bottom = facet_bottom[i, j]

 # region
 region = (fnum_top, fnum_left, fnum_bottom, fnum_right)
 regions[k_regions] = region
 region_phases[k_regions] = bin_nums[i, j]
 k_regions += 1

pmesh = msp.meshing.PolyMesh(pts, facets, regions,
 seed_numbers=range(n_regions),
 phase_numbers=region_phases)

Create the triangle mesh
tmesh = msp.meshing.TriMesh.from_polymesh(pmesh, phases=phases, min_angle=20)

Plot triangle mesh
fig = plt.figure()
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
fig.add_axes(ax)

fcs = [phases[region_phases[r]]['color'] for r in tmesh.element_attributes]
tmesh.plot(facecolors=fcs, edgecolors='k', lw=0.2)

plt.axis('square')
plt.xlim(x.min(), x.max())
plt.ylim(y.min(), y.max())
plt.axis('off')

Save plot and copy input file
plot_basename = 'from_image/trimesh.png'
file_dir = os.path.dirname(os.path.realpath(__file__))
filename = os.path.join(file_dir, plot_basename)
dirs = os.path.dirname(filename)
if not os.path.exists(dirs):
 os.makedirs(dirs)
plt.savefig(filename, bbox_inches='tight', pad_inches=0)

shutil.copy(image_filename, dirs)

Read Image

The first section of the script reads the image using matplotlib.
The brightness of the image is taken as the red channel, since the RGB values
are equal. That image is shown in Fig. 25.

[image: Micrograph of aluminum.]
Fig. 25 Micrograph of aluminum.

Bin Pixels

The pixel values are binned based on whether the brightness is above or
below 0.5.

Phases

The two phases are considered amorphous, to prevent pixilation in the
triangle mesh.

Create the Polygon Mesh

The polygon mesh is a reproduction of the pixel grid in the image.
The facets are edges between pixels, and the polygons are all squares.

Create the Triangle Mesh

The triangle mesh is created from the polygon mesh and uses the amorphous
specifications for the phases. The minimum interior angle of the triangles
is set to 20 degrees to control the aspect ratio of triangles.

Plot Triangle Mesh

The axes of the plot are switched off, then the triangle mesh is plotted.
The color of each triangle is set by the phase.

Save Plot and Copy Input File

The final plot is saved to a file, then the input image is copied to the
same directory for comparison.
The output PNG file of this script is shown in Fig. 26.

[image: Triangular mesh of aluminum microstructure.]
Fig. 26 Triangular mesh of aluminum microstructure.

Microstructure Mesh Process

Python Script

The basename for this file is docs_banner.py.
The file can be run using this command:

microstructpy --demo=docs_banner.py

The full text of the file is:

from __future__ import division

import os

import numpy as np
import scipy.stats
from matplotlib import pyplot as plt

import microstructpy as msp

def main():
 # Colors
 c1 = '#12C2E9'
 c2 = '#C471ED'
 c3 = '#F64F59'

 # Offset
 off = 1

 # Create Directory
 dirname = os.path.join(os.path.dirname(__file__), 'docs_banner')
 if not os.path.exists(dirname):
 os.makedirs(dirname)

 # Create Domain
 domain = msp.geometry.Rectangle(width=10, length=20)

 # Create Unpositioned Seeds
 phase2 = {'color': c1}
 ell_geom = msp.geometry.Ellipse(a=8, b=3)
 ell_seed = msp.seeding.Seed(ell_geom, phase=2)

 mu = 1
 bnd = 0.5
 d_dist = scipy.stats.uniform(loc=mu-bnd, scale=2*bnd)
 phase0 = {'color': c2, 'shape': 'circle', 'd': d_dist}
 phase1 = {'color': c3, 'shape': 'circle', 'd': d_dist}
 circle_area = domain.area - ell_geom.area
 seeds = msp.seeding.SeedList.from_info([phase0, phase1], circle_area)

 seeds.append(ell_seed)
 hold = [False for seed in seeds]
 hold[-1] = True
 phases = [phase0, phase1, phase2]

 # Create Positioned Seeds
 seeds.position(domain, hold=hold, verbose=True)

 # Create Polygonal Mesh
 pmesh = msp.meshing.PolyMesh.from_seeds(seeds, domain)

 # Create Triangular Mesh
 tmesh = msp.meshing.TriMesh.from_polymesh(pmesh,
 min_angle=12,
 max_edge_length=0.2,
 max_volume=0.4)

 # Create Figure
 k = 0.12
 len_x = 3 * domain.length + 4 * off
 len_y = domain.width + 2 * off
 plt.figure(figsize=(k * len_x, k * len_y))

 # Plot Seeds
 seed_colors = [phases[s.phase]['color'] for s in seeds]
 seeds.plot(color=seed_colors, alpha=0.8, edgecolor='k', linewidth=0.3)
 domain.plot(facecolor='none', edgecolor='k', linewidth=0.3)

 # Plot Polygonal Mesh
 pmesh.points = np.array(pmesh.points)
 pmesh.points[:, 0] += domain.length + off
 for region, phase_num in zip(pmesh.regions, pmesh.phase_numbers):
 if phase_num == 2:
 continue
 color = phases[phase_num]['color']

 facets = [pmesh.facets[f] for f in region]
 kps = ordered_kps(facets)
 x, y = zip(*[pmesh.points[kp] for kp in kps])
 plt.fill(x, y, color=color, alpha=0.8, edgecolor='none')

 ellipse_regions = set()
 for region_num, phase_num in enumerate(pmesh.phase_numbers):
 if phase_num == 2:
 ellipse_regions.add(region_num)

 ellipse_facets = []
 for facet, neighbors in zip(pmesh.facets, pmesh.facet_neighbors):
 common_regions = ellipse_regions & set(neighbors)
 if len(common_regions) == 1:
 ellipse_facets.append(facet)
 ellipse_kps = ordered_kps(ellipse_facets)
 x, y = zip(*[pmesh.points[kp] for kp in ellipse_kps])
 plt.fill(x, y, color=phases[-1]['color'], alpha=0.8, edgecolor='none')

 for facet, neighbors in zip(pmesh.facets, pmesh.facet_neighbors):
 common_regions = ellipse_regions & set(neighbors)
 if len(common_regions) < 2:
 x, y = zip(*[pmesh.points[kp] for kp in facet])
 plt.plot(x, y, color='k', linewidth=0.3)

 # Plot Triangular Mesh
 tmesh.points = np.array(tmesh.points)
 tmesh.points[:, 0] += 2 * off + 2 * domain.length
 tri_colors = [seed_colors[n] for n in tmesh.element_attributes]
 tmesh.plot(color=tri_colors, alpha=0.8, edgecolor='k', linewidth=0.2)

 # Set Up Axes
 plt.gca().set_position([0, 0, 1, 1])
 plt.axis('image')
 plt.gca().set_axis_off()
 plt.gca().get_xaxis().set_visible(False)
 plt.gca().get_yaxis().set_visible(False)

 xlim, ylim = domain.limits
 xlim[0] -= off
 xlim[1] += 3 * off + 2 * domain.length

 ylim[0] -= off
 ylim[1] += off

 plt.axis(list(xlim) + list(ylim))

 fname = os.path.join(dirname, 'banner.png')
 plt.savefig(fname, bbox='tight', pad_inches=0)
 plt.savefig(fname.replace('.png', '.pdf'), bbox='tight', pad_inches=0)

def ordered_kps(pairs):
 t_pairs = [tuple(p) for p in pairs]
 kps = list(t_pairs.pop())
 while t_pairs:
 for i, pair in enumerate(t_pairs):
 if kps[-1] in pair:
 break
 assert kps[-1] in pair, pairs
 kps += [kp for kp in t_pairs.pop(i) if kp != kps[-1]]
 return kps[:-1]

if __name__ == '__main__':
 main()

Domain Geometry

The materials fill a rectangular domain with side lengths 20 and 10.
The center of the rectangle defaults to the origin.

Seeds

The first material is phase 2, which contains a single elliptical seed with
semi-axes 8 and 3.
Next, phases 0 and 1 are created with identical size distributions and
different colors.
The size distributions are uniform random from 0.5 to 1.5.
Seeds of phase 0 and phase 1 are generated to fill the area between the
rectangular domain and the elliptical seed from phase 2.

Next, the phase 2 seed is appended to the list of phase 0 and 1 seeds.
A hold list is then created to indicate to
position()
which seeds should have their positions (centers) held.
The default position of a seed is the origin, so by setting the hold flag to
True for the elliptical seed, it will be fixed to the center of the domain
while the remaining seeds will be randomly positioned around it.

Polygonal and Triangular Meshing

Once the seeds are positioned in the domain, a polygonal mesh is created using
from_seeds().
The triangular mesh is created using
from_polymesh(),
with the quality control settings min_angle, max_edge_length, and
max_volume.

Plot Figure

The figure contains three plots: the seeds, the polygonal mesh, and the
triangular/unstructured mesh.
First, the seeds plot is generated using SeedList
plot()
and Rectangle
plot()
to show the boundary of the domain.
The seeds are plotted with some transparency to show overlap.

Next, the polygonal mesh is translated to the right and plotted in such a way
that avoids the internal geometry of the elliptical seed.
This internal geometry is created by the multi-circle approximation used in
polygonal meshing, then removed during the triangular meshing process.
In the interest of clarity, these two steps are combined and the elliptical
grain is plotted without internal geomtry.

Finally, the triangular mesh is translated to the right of the polygonal mesh
and plotted using TriMesh
plot().

Once all three plots have been added to the figure, the axes and
aspect ratio are adjusted.
This figure is shown in Fig. 27.
The PNG and PDF versions of this plot are saved in a folder named
docs_banner, in the current directory (i.e ./docs_banner).

[image: Microstructure meshing process.]
Fig. 27 Microstructure meshing process.

The three major steps are:
1) seed the domain with particles,
2) create a Voronoi power diagram, and
3) convert the diagram into an unstructured mesh.

Command Line Guide

The command line interface (CLI) for this package is microstructpy.
This command accepts the names of user-generated files and demonstration files.
Multiple filenames can be specified.

To run demos, you can specify a particular demo file or to run all of them:

microstructpy --demo=minimal.xml
microstructpy --demo=all

Demo files are copied to the current working directory and then executed.
Running all of the demonstration files may take several minutes.

User-generated input files can be run in a number of ways:

microstructpy /path/to/my/input_file.xml
microstructpy input_1.xml input_2.xml input_3.xml
microstructpy input_*.xml

Both relative and absolute filepaths are acceptable.

Guide Contents

	Introduction
	Using the Command Line Interface

	Command Line Procedure

	Example Input File

	<material>
	Single Material

	Multiple Materials

	Grain Size Distributions

	Grain Geometries
	Circle

	Ellipse

	Ellipsoid

	Rectangle

	Sphere

	Square

	Material Type

	Grain Position Distribution

	Other Material Settings

	<domain>
	Box

	Circle

	Cube

	Ellipse

	Rectangle

	Square

	<settings>
	Defaults

	File and Console I/O
	verbose

	directory

	filetypes

	Run Settings
	restart

	rng_seeds

	rtol

	edge_opt

	edge_opt_n_iter

	mesh_max_volume

	mesh_min_angle

	mesh_max_edge_length

	verify

	Plot Controls
	plot_axes

	color_by

	colormap

	seeds_kwargs

	poly_kwargs

	tri_kwargs

Introduction

Using the Command Line Interface

The command line interface (CLI) for this package is microstructpy.
This command accepts the names of user-generated files and demonstration files.
Multiple filenames can be specified.

To run demos, you can specify a particular demo file or to run all of them:

microstructpy --demo=minimal.xml
microstructpy --demo=all

Demo files are copied to the current working directory and then executed.
Running all of the demonstration files may take several minutes.

User-generated input files can be run in a number of ways:

microstructpy /path/to/my/input_file.xml
microstructpy input_1.xml input_2.xml input_3.xml
microstructpy input_*.xml

Both relative and absolute filepaths are acceptable.

Command Line Procedure

The following tasks are performed by the CLI:

	Make the output directory, if necessary

	Create a list of unpositioned seeds

	Position the seeds in the domain

	Save the seeds in a text file

	Save a plot of the seeds to an image file

	Create a polygon mesh from the seeds

	Save the mesh to the output directory

	Save a plot of the mesh to the output directory

	Create an unstructured (triangular or tetrahedral) mesh

	Save the unstructured mesh

	Save a plot of the unstructured mesh

	(optional) Verify the output mesh against the input file.

Intermediate results are saved in steps 4, 7, and 10 to give the option of
restarting the procedure.
The format of the output files can be specified in the input file
(e.g. PNG and/or PDF plots).

Example Input File

Input files for MicroStructPy must be in XML format.
The three fields of the input file that MicroStructPy looks for are:
<material>, <domain>, and <settings> (optional).
For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size> 0.09 </size>
 </material>

 <domain>
 <shape> square </shape>
 </domain>

 <settings>
 <directory> minimal </directory>
 <plot_axes> False </plot_axes>
 <color_by> seed number </color_by>
 <colormap> Paired </colormap>
 </settings>
</input>

This will create a microstructure with approximately circular grains that
fill a domain that is 11x larger and color them according to the colormap
Paired.

Note

XML fields that are not recognized by MicroStructPy will be ignored by the
software. For example, material properties or notes can be included in the
input file without affecting program execution.

Note

The order of fields in the XML input file is not strictly important,
since the file is converted into a Python dictionary.
When fields are repeated, such as including multiple materials, the order
is preserved.

The following pages describe in detail the various uses and options for the
material, domain, and settings fields of a MicroStructPy input file.

<material> - Material Phases

Single Material

MicroStructPy supports an arbitrary number of materials, including just one.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size> 0.15 </size>
 </material>

 <domain>
 <shape> square </shape>
 </domain>
</input>

This input file will produce a microstructure with nearly circular grains
of size 0.15 (within a domain with side length 1).

Multiple Materials

MicroStructPy supports an arbitrary number of materials within a
microstructure.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size> 1 </size>
 <fraction> 0.2 </fraction>
 </material>

 <material>
 <shape> circle </shape>
 <size> 0.5 </size>
 <fraction> 0.3 </fraction>
 </material>

 <material>
 <shape> circle </shape>
 <size> 1.5 </size>
 <fraction> 0.5 </fraction>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 10 </side_length>
 </domain>
</input>

Here there are three phases: the first has grain size 1 and makes up 20% of the
area, the second has grain size 0.5 and makes up 30% of the area,
and the third has grain size 1.5 and makes up 50% of the area.
If the fractions are not specified, MicroStructPy assumes the phases have equal
volume fractions.
The fractions can also be given as ratios (e.g. 2, 3, and 5) and
MicroStructPy will normalize them to fractions.

Volume fractions can also be distributed quantities, rather than fixed values.
This is useful if measured volume fractions have some uncertainty.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size> 1 </size>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 0.7 </loc>
 <scale> 0.03 </scale>
 </fraction>
 </material>

 <material>
 <shape> circle </shape>
 <size> 0.5 </size>
 <fraction>
 <dist_type> norm </dist_type>
 <loc> 0.3 </loc>
 <scale> 0.03 </scale>
 </fraction>
 </material>
</input>

Here the standard deviation on the volume fractions is 0.03, meaning that
volume fractions are accurate to within 6 percentage points at 95%
confidence.

Note

If the volume fraction distribution has negative numbers in the support,
MicroStructPy will re-sample the distribution until a non-negative volume
fraction is sampled.

Grain Size Distributions

Distributed grain sizes, rather than constant sizes, can be specified as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 1 </loc>
 <scale> 1 </scale>
 </size>
 </material>

 <material>
 <shape> circle </shape>
 <size>
 <dist_type> lognorm </dist_type>
 <scale> 0.5 </scale>
 <s> 0.1 </s>
 </size>
 </material>

 <material>
 <shape> circle </shape>
 <size>
 <dist_type> cdf </dist_type>
 <filename> my_empirical_dist.csv </filename>
 </size>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 10 </side_length>
 </domain>
</input>

In all three materials, the size field contains a dist_type.
This type can match the name of a statistical distribution in the SciPy
scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] module, or be either “pdf” or “cdf”.
If it is a SciPy distribution name, then the remaining parameters must match
the inputs for that function.
The first material has size distribution \(S\sim U(1, 2)\) and the second
has distribution \(S\sim 0.5e^{N(0, 0.1)}\). Refer to the SciPy website for
the complete list of available distributions and their input parameters.

In the case that the distribution type is “pdf” then the only other field
should be filename.
For a PDF, the file should contain two lines: the first has the (n) bin
heights and the second has the (n+1) bin locations.
A PDF file could contain, for example:

0.5, 1
1, 2, 2.5

For a CDF, the file should have two columns: the first being the size and the
second being the CDF value.
The equivalent CDF file would contain:

1, 0
2, 0.5
2.5, 1

Both PDF and CDF files should be in CSV format.

Warning

Do not use distributions that are equivalent to a deterministic value,
such as \(S\sim N(1, 0)\). The infinite PDF value causes numerical
issues for SciPy. Instead, replace the distribution with the deterministic
value or use a small, non-zero variance.

Grain Geometries

MicroStructPy supports several grain geometries and each can be specified in
multiple ways.
For example, the ellipse can be specified in terms of its area and aspect
ratio, or by its semi-major and semi-minor axes.
The ‘size’ of a grain is defined as the diameter of a circle or sphere with
equivalent area (so for a general ellipse, this would be \(2\sqrt{a b}\)).
The parameters available for each geometry are described in the lists below.

Circle

Class: microstructpy.geometry.Circle

Parameters

	area - the area of the circle

	d - alias for diameter

	diameter - the diameter of the circle

	r - alias for radius

	radius - the radius of the circle

	size - same as diameter

Only one of the above is necessary to define the circle geometry.
If no parameters are specified, the default is a unit circle.

Ellipse

Class: microstructpy.geometry.Ellipse

Parameters

	a - the semi-major axis of the ellipse

	angle - alias for angle_deg

	angle_deg - the counterclockwise positive angle between the semi-major
axis and the +x axis, measured in degrees

	angle_rad - the counterclockwise positive angle between the semi-major
axis and the +x axis, measured in radians

	aspect_ratio - the ratio a/b

	axes - semi-axes of ellipse, equivalent to [a, b]

	b - the semi-minor axis of the ellipse

	matrix - orientation matrix for the ellipse

	orientation - alias for matrix

	size - the diameter of a circle with the same area as the ellipse

Two shape parameters and one orientation parameter are necessary to fully
define the ellipse geometry.
If less than two shape parameters are given, the default is a unit circle.
If an orientation parameter is not given, the default is aligned with the
coordinate axes.

Note

The default orientation of an ellipse is aligned with the coordinate
axes.
Uniform random orientation can be achieved by setting
<orientation> random </orientation> in the input file.

Ellipsoid

Class: microstructpy.geometry.Ellipsoid

Parameters

	a - first semi-axis of the ellipsoid

	axes - semi-axes of the ellipsoids, equivalent to [a, b, c]

	b - second semi-axis of the ellipsoid

	c - third semi-axis of the ellipsoid

	matrix - orientation matrix for the ellipsoid

	orientation - alias for matrix

	ratio_ab - the ratio a/b

	ratio_ac - the ratio a/c

	ratio_ba - the ratio b/a

	ratio_bc - the ratio b/c

	ratio_ca - the ratio c/a

	ratio_cb - the ratio c/b

	rot_seq - alias for rot_set_seq

	rot_seq_deg - a rotation sequence, with angles in degrees, to define
the orientation of the ellipsoid. See below for details.

	rot_seq_rad - a rotation sequence, with angles in radians, to define
the orientation of the ellipsoid. See below for details.

	size - the diameter of a sphere with the same volume as the ellipsoid

Three shape parameters and one orientation parameter are necessary to fully
define the ellipsoid geometry.
If the length of a semi-axis cannot be determined from the input parameters,
it defaults to unit length.
If an orientation parameter is not given, the default is aligned with the
coordinate axes.

A rotation sequence is a list of axes and angles to rotate the ellipsoid.
The order of the rotations is as such: supposing after a z-rotation that
the new x and y axes are x’ and y’, a subsequent y-rotation would be about the
y’ axis.
An example rotation sequence is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> ellipsoid </shape>
 <axes> 5, 3, 1 </axes>

 <rot_seq_deg>
 <axis> z </axis>
 <angle> 10 </angle>
 </rot_seq_deg>

 <rot_seq_deg>
 <axis> x </axis>
 <angle>
 <dist_type> uniform </dist_type>
 <loc> 30 </loc>
 <scale> 30 </scale>
 </angle>
 </rot_seq_deg>

 <rot_seq_deg>
 <axis> y </axis>
 <angle>
 <dist_type> norm </dist_type>
 <loc> 0 </loc>
 <scale> 30 </scale>
 </angle>
 </rot_seq_deg>
 </material>
</input>

This represents first a z-rotation of 10 degrees, then an x-rotation of 30-60
degrees, then finally a y-rotation of \(N(0, 30)\) degrees.

Note

Ellipsoids with uniform random distribution will be generated using
<orientation> random </orientation>.
Positions on the unit 4-sphere are generated with a uniform random
distribution, then converted into a quaternion and finally into a rotation
matrix.

Rectangle

Class: microstructpy.geometry.Ellipsoid

Parameters

	angle- alias for angle_deg

	angle_deg - rotation angle, in degrees, measured counterclockwise from
the +x axis

	angle_rad - rotation angle, in radians, measured counterclockwise from
the +x axis

	length - the x-direction side length of the rectangle

	matrix - the orientation matrix of the rectangle

	side_lengths - equivalent to [length, width]

	width - the y-direction side length of the rectangle

Both the length and the width of the rectangle must be specified.
If either is not specified, the default rectangle is a sqaure with unit
side length.
If an orientation is not specified, the default is aligned with the coordinate
axes.

Sphere

Class: microstructpy.geometry.Sphere

Parameters

	d - alias for diameter

	diameter - the diameter of the sphere

	r - alias for radius

	radius - the radius of the sphere

	size - alias for diameter

	volume - volume of the sphere

Only one of the above is necessary to define the sphere geometry.
If no parameters are specified, the default is a unit sphere.

Square

Class: microstructpy.geometry.Square

Parameters

	angle - alias for angle_deg

	angle_deg - the rotation angle, in degrees, of the square measured
counterclockwise from the +x axis

	angle_rad - the rotation angle, in radians, of the square measured
counterclockwise from the +x axis

	matrix - the orientation matrix of the square

	side_length - the side lnegth of the square

If the side length of the square is not specified, the default is 1.
If an orientation parameter is not specified, the default orientation is
aligned with the coordinate axes.

Note

Over-parameterizing grain geometries will cause unexpected behavior.

For parameters such as “side_lengths” and “axes”, the input is expected to be
a list, e.g. <axes> 1, 2 </axes> or <axes> (1, 2) </axes>.
For matrices, such as “orientation”, the input is expected to be a list of
lists, e.g. <orientation> [[0, -1], [1, 0]] </orientation>.

Each of the scalar arguments can be either a constant value or a distribution.
For uniform random distribution of ellipse and ellipsoid axes, used the
parameter <orientation> random </orientation>.
The default orientation is axes-aligned.

Here is an example input file with non-circular grains:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> ellipse </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 1 </loc>
 <scale> 1 </scale>
 </size>
 <aspect_ratio> 3 </aspect_ratio>
 <orientation> random </orientation>
 </material>

 <material>
 <shape> square </shape>
 <side_length>
 <dist_type> lognorm </dist_type>
 <scale> 0.5 </scale>
 <s> 0.1 </s>
 </side_length>
 </material>

 <material>
 <shape> rectangle </shape>
 <length>
 <dist_type> cdf </dist_type>
 <filename> my_empirical_dist.csv </filename>
 </length>
 <width> 0.2 </width>
 <angle_deg>
 <dist_type> uniform <dist_type>
 <loc> -30 </loc>
 <scale> 60 </scale>
 </angle_deg>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 10 </side_length>
 </domain>
</input>

Material Type

There are three types of materials supported by MicroStructPy: crystalline,
amorphous, and void.
For crystalline phases, facets between cells of the same grain are removed
before unstructured meshing.
For amorphous phases, facets between cells of the same phase are removed
before meshing.
Finall, void phases produce empty spaces in the unstructured mesh.
There are several synonyms for these material types, including:

	crystalline: granular, solid

	amorphous: glass, matrix

	void: crack, hole

The default material type is crystalline.
An example input file with material types is:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 1 </scale>
 </size>
 <material_type> matrix </material_type>
 </material>

 <material>
 <shape> square </shape>
 <side_length> 0.5 </side_length>
 <material_type> void </material_type>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 10 </side_length>
 </domain>
</input>

Here, the first phase is an amorphous (matrix) phase and the second phase
contains square voids of constant size.
A material can contain multiple amorphous and void phases.

Note

Void phases may cause parts of the mesh to become disconnected.
MicroStructPy does not check for or remove disconnected regions from the
mesh.

Grain Position Distribution

The default position distribution for grains is random uniform throughout the
domain.
Grains can be non-uniformly distributed by adding a position distribution.
The x, y, and z can be independently distributed or coupled.
The coupled distributions can be any of the multivariate distributions listed
in the SciPy scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] module.

In the example below, the first material has independently distributed
coordinates while the second has a coupled distribution.

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 1 </scale>
 </size>
 <position> <!-- x -->
 <dist_type> binom </dist_type>
 <loc> 0.5 </loc>
 <n> 9 </n>
 <p> 0.5 </p>
 </position>
 <position> <!-- y -->
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 10 </scale>
 </position>
 </material>

 <material>
 <shape> square </shape>
 <side_length> 0.5 </side_length>
 <position>
 <dist_type> multivariate_normal </dist_type>
 <mean> [2, 3] </mean>
 <cov> [[4, -1], [-1, 3]] </cov>
 </position>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 10 </side_length>
 <corner> 0, 0 </corner>
 </domain>
</input>

Position distributions should be used with care, as seeds may not fill the
entire domain.

Other Material Settings

Name The name of each material can be specified by adding a “name” field.
The default name is “Material N” where N is the order of the material in
the XML file, starting from 0.

Color The color of each material in output plots can be specified by adding
a “color” field.
The default color is “CN” where N is the order of the material in the XML file,
starting from 0.
For more information about color specification, visit the Matplotlib
Specifying Colors [https://matplotlib.org/3.1.0/tutorials/colors/colors.html] webpage.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <name> Aluminum </name>
 <color> silver </color>
 <shape> circle </shape>
 <size> 1 </size>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 10 </side_length>
 </domain>
</input>

<domain> - Microstructure Domain

MicroStructPy supports the following domain geometries:

	2D: circle, ellipse, rectangle, square

	3D: box, cube

Each geometry can be defined several ways, such as a center and edge lengths
for the rectangle or two bounding points.
Note that over-parameterizing the domain geometry will cause unexpected
behavior.

Box

Class: microstructpy.geometry.Box

Parameters

	bounds - alias for limits

	center - the center of the box

	corner - the bottom-most corner of the box (i.e. \((x, y, z)_{min}\))

	limits - the x, y, z upper and lower bounds of the box
(i.e. \([[x_{min}, x_{max}], [y_{min}, y_{max}], [z_{min}, z_{max}]]\))

	side_lengths - the x, y, and z side lengths of the box

Below are some example box domain definitions.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Example box domains -->
<input>
 <domain>
 <shape> box </shape>
 <!-- default side length is 1 -->
 <!-- default center is the origin -->
 </domain>

 <domain>
 <shape> box </shape>
 <side_lengths> 2, 1, 6 </side_lengths>
 <corner> 0, 0, 0 </corner>
 </domain>

 <domain>
 <shape> BOX </shape>
 <limits> 0, 2 </limits> <!-- x -->
 <limits> -2, 1 </limits> <!-- y -->
 <limits> -3, 0 </limits> <!-- z -->
 </domain>

 <domain>
 <shape> boX </shape> <!-- case insensitive -->
 <bounds> [[0, 2], [-2, 1], [-3, 0]] </bounds>
 </domain>
</input>

Circle

Class: microstructpy.geometry.Circle

Parameters

	area - the area of the circle

	center - the center of the circle

	d - alias for diameter

	diameter - the diameter of the circle

	r - alias for radius

	radius - the radius of the circle

	size - same as diameter

The default radius of a circle is 1, while the default center is (0, 0).

Below are some example circle domain definitions.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Example circle domains -->
<input>
 <domain>
 <shape> circle </shape>
 <!-- default radius is 1 -->
 <!-- default center is the origin -->
 </domain>

 <domain>
 <shape> circle </shape>
 <diameter> 3 </diameter>
 </domain>

 <domain>
 <shape> circle </shape>
 <radius> 10 </radius>
 <center> 0, 10 <center>
 </domain>
</input>

Cube

Class: microstructpy.geometry.Cube

Parameters

	center - the center of the cube

	corner - the bottom-most corner of the cube
(i.e. \((x, y, z)_{min}\))

	side_length - the side length of the cube

The defaultt side length of the cube is 1, while the default center is
(0, 0).

Below are some example cube domain definitions.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Example cube domains -->
<input>
 <domain>
 <shape> cube </shape>
 <!-- default side length is 1 -->
 <!-- default center is the origin -->
 </domain>

 <domain>
 <shape> cube </shape>
 <side_length> 10 </side_length>
 <corner> (0, 0, 0) </corner>
 </domain>

 <domain>
 <shape> cube </shape>
 <corner> 0, 0, 0 </corner>
 </domain>
</input>

Ellipse

Class: microstructpy.geometry.Ellipse

Parameters

	a - the semi-major axis of the ellipse

	angle - alias for angle_deg

	angle_deg - the counterclockwise positive angle between the semi-major
axis and the +x axis, measured in degrees

	angle_rad - the counterclockwise positive angle between the semi-major
axis and the +x axis, measured in radians

	aspect_ratio - the ratio a/b

	axes - semi-axes of ellipse, equivalent to [a, b]

	b - the semi-minor axis of the ellipse

	center - the center of the ellipse

	matrix - orientation matrix for the ellipse

	orientation - alias for matrix

	size - the diameter of a circle with the same area as the ellipse

The default value for the semi-axes of the ellipse is 1.
The default orientation of the ellipse is aligned with the coordinate axes.
Finally, the default position of the ellipse is centered at (0, 0).

Below are some example ellipse domain definitions.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Example ellipse domains -->
<input>
 <domain>
 <shape> ellipse </shape>
 <!-- default is a unit circle centered at the origin -->
 </domain>

 <domain>
 <shape> ellipse </shape>
 <a> 10
 4
 <angle> 30 </angle>
 <center> 2, -1 </center>
 </domain>

 <domain>
 <shape> ellipse </shape>
 <axes> 5, 3 </axes>
 </domain>

 <domain>
 <shape> ellipse </shape>
 <size> 10 </size>
 <aspect_ratio> 5 </aspect_ratio>
 <angle_deg> -45 </angle_deg>
 </domain>
</input>

Rectangle

Class: microstructpy.geometry.Rectangle

Parameters

	bounds - alias for limits

	center - the center of the rectangle

	corner - the bottom-most corner of the rectangle
(i.e. \((x, y)_{min}\))

	length - the x-direction side length of the rectangle

	limits - the x and y upper and lower bounds of the rectangle
(i.e. \([[x_{min}, x_{max}], [y_{min}, y_{max}]]\))

	side_lengths - equivalent to [length, width]

	width - the y-direction side length of the rectangle

The default side lengths of the rectangle are 1, while the default position is
centered at the origin.

Below are some example rectangle domain definitions.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Example rectangle domains -->
<input>
 <domain>
 <shape> rectangle </shape>
 <!-- default side length is 1 -->
 <!-- default center is the origin -->
 </domain>

 <domain>
 <shape> rectangle </shape>
 <side_lengths> 2, 1 </side_lengths>
 <corner> 0, 0 </corner>
 </domain>

 <domain>
 <shape> rectangle </shape>
 <limits> 0, 2 </limits> <!-- x -->
 <limits> -2, 1 </limits> <!-- y -->
 </domain>

 <domain>
 <shape> rectangle </shape>
 <bounds> [[0, 2], [-2, 1]] </bounds>
 </domain>
</input>

Square

Class: microstructpy.geometry.Square

Parameters

	side_length - the side length of the square

	center - the position of the center of the square

	corner - the bottom-most corner of the square
(i.e. \((x, y)_{min}\))

The default side length of a square is 1, while the default center position is
(0, 0).

Below are some example square domain definitions.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Example square domains -->
<input>
 <domain>
 <shape> square </shape>
 <!-- default side length is 1 -->
 <!-- default center is the origin -->
 </domain>

 <domain>
 <shape> square </shape>
 <side_length> 2 </side_length>
 <corner> 0, 0 </corner>
 </domain>

 <domain>
 <shape> square </shape>
 <corner> 0, 0 </corner>
 </domain>

 <domain>
 <shape> square </shape>
 <side_length> 10 </side_length>
 <center> 5, 0 </center>
 </domain>
</input>

<settings> - Settings

Defaults

Settings can be added to the input file to specify file outputs and mesh
quality, among other things. The default settings are:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Default settings -->
<input>
 <settings>
 <!-- File and Console I/O -->
 <verbose> False </verbose>
 <directory> . </directory>

 <filetypes>
 <seeds> txt </seeds>
 <poly> txt </poly>
 <tri> txt </tri>
 <seeds_plot> png </seeds_plot>
 <poly_plot> png </poly_plot>
 <tri_plot> png </tri_plot>
 <verify_plot> png </verify_plot>
 </filetypes>

 <!-- Run Settings -->
 <restart> True </restart>

 <rng_seeds>
 <position> 0 </position>
 <!-- RNG can be set for grain shape distributions as well. -->
 <!-- For example, <size> 2 </size> seeds the RNG for -->
 <!-- sampling size distributions with 2. -->
 </rng_seeds>

 <rtol> fit </rtol>

 <edge_opt> False </edge_opt>
 <edge_opt_n_iter> 100 </edge_opt_n_iter>

 <mesh_max_volume> inf </mesh_max_volume>
 <mesh_min_angle> 0 </mesh_min_angle>
 <mesh_max_edge_length> inf </mesh_max_edge_length>

 <verify> False </verify>

 <!-- Plot Controls -->
 <plot_axes> True </plot_axes>

 <color_by> material </color_by>
 <colormap> viridis </colormap>

 <seeds_kwargs> </seeds_kwargs>
 <poly_kwargs> </poly_kwargs>
 <tri_kwargs> </tri_kwargs>
 </settings>
</input>

File and Console I/O

verbose

The verbose flag toggles text updates to the console as MicroStructPy runs.
Setting <verbose> True </verbose> will print updates, while False turns
them off.

directory

The directory field is for the path to the output files.
It can be an absolute file path, or relative to the input file.
For example, if the file is in aa/bb/cc/input.xml and the directory field
is <directory> ../output </directory>, then MicroStructPy will write
output files to aa/bb/output/.
If the output directory does not exist, MicroStructPy will create it.

filetypes

This field is for specifying output filetypes.
The possible subfields are seeds, seeds_plot, poly, poly_plot, tri, tri_plot,
and verify_plot.
Below is an outline of the possible filetypes for each subfield.

	seeds

txt, vtk

Currently the only options are to output the seed geometries as a
cache txt file or as a VTK legacy file. The VTK file can be opened
in ParaView, with the seeds shown as glyphs.

	seeds_plot

ps, eps, pdf, pgf, png, raw, rgba, svg,
svgz, jpg, jpeg, tif, tiff

These are the standard matplotlib output filetypes.

	poly

txt, poly (2D only), ply, vtk

A poly file contains a planar straight line graph (PSLG) and cane be read
by Triangle.
More details on poly files can be found on the .poly files [https://www.cs.cmu.edu/~quake/triangle.poly.html] page of the
Triangle website.
The ply file contains the surfaces between grains and the boundary of the
domain.
VTK legacy files also contain the polygonal grains in 2D and polyhedral
grains in 3D.

	poly_plot

ps, eps, pdf, pgf, png, raw, rgba, svg,
svgz, jpg, jpeg, tif, tiff

These are the standard matplotlib output filetypes.

	tri

txt, abaqus, tet/tri, vtk (3D only)

The abaqus option will create a part for each grain and assembly the parts.
The tet/tri option will create .node and .elem files in the same format as
the output of Triangle or TetGen.
VTK files are suitable for viewing the mesh interactively in a program such
as Paraview.

	tri_plot

ps, eps, pdf, pgf, png, raw, rgba, svg,
svgz, jpg, jpeg, tif, tiff

These are the standard matplotlib output filetypes.

	verify_plot

ps, eps, pdf, pgf, png, raw, rgba, svg,
svgz, jpg, jpeg, tif, tiff

These are the standard matplotlib output filetypes.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <settings>
 <filetypes>
 <seeds> txt </seeds>
 <seeds_plot> png, pdf </seeds_plot>
 <poly> txt, ply </poly>
 <poly_plot> svg </poly_plot>
 <tri> txt </tri>
 <tri_plot> pdf </tri_plot>
 <verify_plot> pdf </verify_plot>
 </filetypes>
 </settings>
</input>

If a subfield is not specified, that output is not saved to any file.
The exception is, if <restart> True </restart>, then the seeds, poly mesh,
and tri mesh will all be output to txt files.

Run Settings

restart

The restart flag will read the intermediate txt output files, if they exist,
instead of duplicating previous work.
Setting <restart> True </restart> will read the txt files, while False will
ignore the existing txt files.

rng_seeds

The random number generator (RNG) seeds can be included to create multiple,
repeatable realizations of a microstructure.
By default, RNG seeds are all set to 0.
An RNG seed can be specified for any of the distributed parameters in grain
geometry.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <radius>
 <dist_type> uniform </dist_type>
 <loc> 1 </loc>
 <scale> 2 </scale>
 </radius>
 </material>

 <material>
 <shape> ellipse </shape>
 <axes> 1, 2 </axes>
 <angle_deg>
 <dist_type> norm </dist_type>
 <loc> 0 <loc>
 <scale> 15 </scale>
 </angle_deg>
 </material>

 <settings>
 <rng_seeds>
 <radius> 1 </radius>
 <angle_deg> 0 </angle_deg>
 <position> 3 </position>
 </rng_seeds>
 </settings>
</input>

In this case, if the position RNG were changed from 3 to 4 and the rest of the
RNG seeds remained the same, MicroStructPy would generate the same set of seed
geometries and arrange them differently in the domain.

rtol

The rtol field is for the relative overlap tolerance between seed geometries.
The overlap is relative to the radius of the smaller circle or sphere.
Overlap is acceptable if

\[\frac{r_1 + r_2 - ||x_1 - x_2||}{min(r_1, r_2)} < rtol\]

The default value is <rtol> fit </rtol>, which uses a fit curve to
determine an appropriate value of rtol.
This curve considers the coefficient of variation in grain volume and estimates
an rtol value that maximizes the fit between input and output distributions.

Acceptable values of rtol are 0 to 1 inclusive, though rtol below 0.2 will
likely result in long runtimes.

edge_opt

The edge_opt field provides the option to maximize the shortest edge in the
polygonal/polyhedral mesh.
The default is <edge_opt> False </edge_opt>, which skips the optimization
process.
This optimization is performed by making small adjustments to the positions of
seeds surrounding the shortest edge, assessing if the change created an
improvement, then either a) attempting a different change for the same edge if
there was not improvement or b) moving on to the new shortest edge.
The optimization algorithm exits when edge_opt_n_iter iterations have been
performed on the same edge.

This flag is useful if the polygonal/polyhedral or triangular/tetrahedral are
used in numerical simulations, such as finite element analysis.
A high ratio of longest edge to shortest edge leads to a high ratio in maximum
to minimum eigenvalue in FEA stiffness matrices, which can create problems for
the FEA solver.
Setting edge_opt to True will reduce short edges in the polygonal mesh,
which translates into reduced short edges in the triangular mesh.
This optimization process, however, will increase the time to generate a
polygonal mesh.
To track the progress of the optimizer, set verbose to True.

edge_opt_n_iter

This field specifies how many times the optimizer should attempt to increase
the length of the shortest edge in the polygonal mesh.
The default is <edge_opt_n_iter> 100 </edge_opt_n_iter>, which limits the
optimizer to 100 attempts per edge.
This field is ignored if edge_opt is set to False.

mesh_max_volume

This field defines the maximum volume (or area, in 2D) of any element in the
triangular (unstructured) mesh.
The default is <mesh_max_volume> inf </mesh_max_volume>, which turns off
the volume control.
In this example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <area> 0.01 </area>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 1 </side_length>
 </domain>

 <settings>
 <mesh_max_volume> 0.001 </mesh_max_volume>
 </settings>
</input>

the unstructured mesh will have at least 10 elements per grain and at least
1000 elements overall.

mesh_min_angle

This field defines the minimum interior angle, measured in degrees, of any
element in the triangular mesh.
For 3D meshes, this is the minimum dihedral angle, which is between faces of
the tetrahedron.
This setting controls the aspect ratio of the elements, with angles between
15 and 30 degrees producing good quality meshes.
The default is <mesh_min_angle> 0 </mesh_min_angle>, which effectively
turns off the angle quality control.

mesh_max_edge_length

This field defines the maximum edge length along a grain boundary in a 2D
triangular mesh.
A small maximum edge length will increase resolution of the mesh at grain
boundaries.
Currently this feature has no equivalent in 3D.
The default value is <mesh_max_edge_length> inf </mesh_max_edge_length>,
which effectively turns off the edge length quality control.

verify

The verify flag will perform mesh verification on the triangular mesh and
report error metrics.
To include mesh verification, include <verify> True </verify> in the
settings.
The default behavior is to not perform mesh verification.

Plot Controls

plot_axes

The plot_axes flag toggles the axes on or off in the output plots.
Setting it to False turns the axes off, producing images with miniminal
borders.
The default setting is <plot_axes> True </plot_axes>, which includes the
coordinate axes in output plots.

color_by

The color_by field defines how the seeds and grains should be colored in the
output plots.
There are three options for this field: “material”, “seed number”, and
“material number”.
The default setting is <color_by> material </color_by>.
Using “material”, the output plots will color each seed/grain with the color
of its material.
Using “seed number”, the seeds/grains are colored by their seed number, which
is converted into a color using the colormap.
The “material number” option behaves in the same was as “seed number”, except
that the material numbers are used instead of seed numbers.

colormap

The colormap field is used when color_by is set to either “seed number” or
“material number”.
This gives the name of the colormap to be used in coloring the seeds/grains.
For a complete list of available colormaps, visit the Choosing Colormaps in
Matplotlib [https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html] webpage.

seeds_kwargs

This field contains optional keyword arguments passed to matplotlib when
plotting the seeds.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <settings>
 <seeds_kwargs>
 <edgecolor> none </edgecolor>
 <alpha> 0.5 </alpha>
 </seeds_kwargs>
 </settings>
</input>

will plot the seeds with some transparency and no borders.

poly_kwargs

This field contains optional keyword arguments passed to matplotlib when
plotting the polygonal mesh.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <settings>
 <poly_kwargs>
 <linewidth> 0.5 </linewidth>
 <edgecolors> blue </edgecolors>
 </poly_kwargs>
 </settings>
</input>

will plot the mesh with thin, blue lines between the grains.

tri_kwargs

This field contains optional keyword arguments passed to matplotlib when
plotting the triangular mesh.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <settings>
 <tri_kwargs>
 <linewidth> 0.5 </linewidth>
 <edgecolors> white </edgecolors>
 </tri_kwargs>
 </settings>
</input>

will plot the mesh with thin, white lines between the elements.

Python Package Guide

The Python package for MicroStructPy includes the following:

microstructpy
├─ cli
├─ geometry
│ ├─ Box
│ ├─ Cube
│ ├─ Circle
│ ├─ Ellipse
│ ├─ Ellipsoid
│ ├─ Rectangle
│ ├─ Square
│ └─ Sphere
├─ seeding
│ ├─ Seed
│ └─ SeedList
├─ meshing
│ ├─ PolyMesh
│ └─ TriMesh
└─ verification

The cli module contains the functions related to the command line interface
(CLI), including converting XML input files into dictionaries.
The geometry module contains classes for seed and domain geometries.
In the seeding package, there is the single Seed class and the SeedList class,
which functions like a Python list but includes some additional methods such
as positioning and plotting the seeds.
Next, the PolyMesh and TriMesh classes are contained in the meshing module.
A PolyMesh can be created from a SeedList and a TriMesh can be created from
a PolyMesh.
Finally, the verification module contains functions to compare the output
PolyMesh and TriMesh with desired microstructural properties.

This guide explains how to use the MicroStructPy Python package.
It starts with a script that executes an abbreviated version of the
standard workflow.
The checks, restarts, etc are excluded to show how the principal classes are
used in a workflow.
The following sections describe the meshing methods, the file I/O and plotting
functions, and the format of a material phase dictionary.

The Standard Workflow

Below is an input file similar to the Input File Introduction.
The script that follows will produce the same results as running this script
from the command line interface.

XML Input File

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <name> Matrix </name>
 <material_type> matrix </material_type>
 <fraction> 2 </fraction>
 <shape> circle </shape>
 <size>
 <dist_type> uniform </dist_type>
 <loc> 0 </loc>
 <scale> 1.5 </scale>
 </size>
 </material>

 <material>
 <name> Inclusions </name>
 <fraction> 1 </fraction>
 <shape> circle </shape>
 <diameter> 2 </diameter>
 </material>

 <domain>
 <shape> square </shape>
 <side_length> 20 </side_length>
 <corner> (0, 0) </corner>
 </domain>

 <settings>
 <rng_seeds>
 <size> 1 </size>
 </rng_seeds>

 <mesh_min_angle> 25 </mesh_min_angle>
 </settings>
</input>

Equivalent Python Script

import matplotlib.pyplot as plt
import microstructpy as msp
import scipy.stats

Create Materials
material_1 = {
 'name': 'Matrix',
 'material_type': 'matrix',
 'fraction': 2,
 'shape': 'circle',
 'size': scipy.stats.uniform(loc=0, scale=1.5)
}

material_2 = {
 'name': 'Inclusions',
 'fraction': 1,
 'shape': 'circle',
 'diameter': 2
}

materials = [material_1, material_2]

Create Domain
domain = msp.geometry.Square(side_length=15, corner=(0, 0))

Create List of Un-Positioned Seeds
seed_area = domain.area
rng_seeds = {'size': 1}
seeds = msp.seeding.SeedList.from_info(materials,
 seed_area,
 rng_seeds)

Position Seeds in Domain
seeds.position(domain)

Create Polygonal Mesh
pmesh = msp.meshing.PolyMesh.from_seeds(seeds, domain)

Create Triangular Mesh
min_angle = 25
tmesh = msp.meshing.TriMesh.from_polymesh(pmesh,
 materials,
 min_angle)

Save txt files
seeds.write('seeds.txt')
pmesh.write('polymesh.txt')
tmesh.write('trimesh.txt')

Plot outputs
seed_colors = ['C' + str(s.phase) for s in seeds]
seeds.plot(facecolors=seed_colors, edgecolor='k')
plt.axis('image')
plt.savefig('seeds.png')
plt.clf()

poly_colors = [seed_colors[n] for n in pmesh.seed_numbers]
pmesh.plot(facecolors=poly_colors, edgecolor='k')
plt.axis('image')
plt.savefig('polymesh.png')
plt.clf()

tri_colors = [seed_colors[n] for n in tmesh.element_attributes]
tmesh.plot(facecolors=tri_colors, edgecolor='k')
plt.axis('image')
plt.savefig('trimesh.png')
plt.clf()

Highlighted are the four principal methods used in generating a microstructure:
SeedList.from_info(),
SeedList.position(),
PolyMesh.from_seeds(),
TriMesh.from_polymesh().

Meshing Methods

Laguerre-Voronoi Tessellation

Polygonal/polyhedral meshes are generated in MicroStructPy using a
Laguerre-Voronoi tessellation, also known as a Power Diagram [https://en.wikipedia.org/wiki/Power_diagram].
It is conceptually similar to a Voronoi diagram, the difference being that seed
points are weighted rather than unweighted.
In the PolyMesh.from_seeds() method, the center of a seed is consider
a Voronoi seed point and the radius is its weight.

Non-circular seeds are replaced by their breakdown, resulting in
multiple Voronoi cells representing a single grain.
To retrieve all of the cells that represent a single grain, mask the
seed_numbers property of a PolyMesh.

The Laguerre-Voronoi diagram is created by Voro++ [http://math.lbl.gov/voro++/], which is accessed
using pyvoro [https://github.com/mmalahe/pyvoro].

Unstructured Meshing

The triangular/tetrahedral meshes are generated in MicroStructPy using the
MeshPy [https://mathema.tician.de/software/meshpy/] package.
It links with Triangle [https://www.cs.cmu.edu/~quake/triangle.html] to create 2D triangular meshes and with TetGen [http://wias-berlin.de/software/tetgen/]
to create 3D tetrahedral meshes.

A polygonal mesh, PolyMesh, can be converted into an unstructured
mesh using the TriMesh.from_polymesh() method.
Cells of the same seed number are merged before meshing to prevent unnecessary
internal geometry.
Similarly, if the material_type of a phase is set to amorphous, then
cells of the same phase number are also merged.
Cells with the material_type set to void are treated as holes in
MeshPy, resulting in voids in the output mesh.

File I/O & Plot Methods

There are file read and write functions associated with each of the classes
listed above.

The read methods are:

	SeedList.from_file()

	PolyMesh.from_file()

	TriMesh.from_file()

The write methods are:

	SeedList.write()

	PolyMesh.write()

	TriMesh.write()

The read functions currently only support reading cache text files.
The SeedList only writes to cache text files, while PolyMesh and TriMesh can
output to several file formats.

The SeedList, PolyMesh, and TriMesh classes have the following plotting
methods:

	SeedList.plot()

	SeedList.plot_breakdown()

	PolyMesh.plot()

	PolyMesh.plot_facets()

	TriMesh.plot()

These functions operate like the matplotlib plt.plot function in that
they just plot to the current figure.
You still need to add plt.axis('equal'), plt.show(), etc to format and
view the plots.

Phase Dictionaries

Functions with phase information input require a list of dictionaries, one for
each material phase.
The dictionaries should be organized in a manner similar to the example below.

phase = {
 'name': 'Example Phase',
 'color': 'blue',
 'material_type': 'crystalline',
 'fraction': 0.5,
 'max_volume': 0.1,
 'shape': 'ellipse',
 'size': 1.2,
 'aspect_ratio': 2
}

The dictionary contains both data about the phase as a whole, such as its
volume fraction and material type, and about the individual grains.
The keywords size and aspect_ratio are keyword arguments for defining
an Ellipse, so those are passed through to the Ellipse class when
creating the seeds.
For a non-uniform size (or aspect ratio) distribution, replace the constant
value with a distribution from the SciPy scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] module.
For example:

import scipy.stats
size_dist = scipy.stats.uniform(loc=1, scale=0.4)
phase['size'] = size_dist

The max_volume option allows for maximum element volume controls to be
phase-specific.

Output File Formats

MicroStructPy creates output files for the seed geometries, polygonal meshes,
the unstructured/triangular meshes, and verification data.
Some of these outputs can be written in standard file formats, such as VTK.
Output files with a .txt extension are custom and explained in the
following sections.

List of Seeds

The SeedList class can write its contents to a file using the
SeedList.write() method and be read from a file using the
SeedList.from_file() method.
The CLI reads from and writes to seeds.txt in a run’s directory.

This file contains a printed list of all the seeds in the list.
Specifically, the seeds are converted to strings and the strings are written
to the file.

The file that results looks like:

Geometry: circle
Radius: 1
Center: (2, -1)
Phase: 0
Breakdown: ((2, -1, 1))
Position: (2, -1)
Geometry: ellipse
a: 3
b: 1.5
angle: -15
center: (-5 3)
phase: 1
breakdown: ((-5, 3, 1.5), (-4, 2.5, 1.3), (-6, 3.5, 1.3))
position: (-5, 3)
...
...
...
Geometry: <class name from microstructpy.geometry>
<param1>: <value1>
<param2>: <value2>
 ...
<paramN>: <valueN>
phase: <phase number>
breakdown: <circular/spherical breakdown of geometry>
position: <position of seed>

For more information on how each seed listing is converted back into an
instance of the Seed class, see Seed.from_str().

Note

For geomtries such as the circle and ellipse, it seems redundant to
specify both the center and the position of the seed.
The rationale is that some geometries may be specified by some other
point instead of the center.

Polygonal Mesh

The polygonal mesh (or polyhedral mesh in 3D) can be written to and read
from a .txt file.
It can also be written to .poly files for 2D meshes, .vtk files for
2D and 3D meshes, and .ply files for any number of dimensions.

Text File

The text string output file is meant solely for saving the polygon/
polyhedron mesh as an intermediate step in the meshing process.
The format for the text string file is:

Mesh Points: <numPoints>
 x1, y1(, z1) <- optional tab at line start
 x2, y2(, z2)
 ...
 xn, yn(, zn)
Mesh Facets: <numFacets>
 f1_1, f1_2, f1_3, ...
 f2_1, f2_2, f2_3, ...
 ...
 fn_1, fn_2, fn_3, ...
Mesh Regions: <numRegions>
 r1_1, r1_2, r1_3, ...
 r2_1, r2_2, r2_3, ...
 ...
 rn_1, rn_2, rn_3, ...
Seed Numbers: <numRegions>
 s1
 s2
 ...
 sn
Phase Numbers: <numRegions>
 p1
 p2
 ...
 pn

For example:

Mesh Points: 4
 0.0, 0.0
 1.0, 0.0
 3.0, 2.0
 2.0, 2.0
Mesh Facets: 5
 0, 1
 1, 2
 2, 3
 3, 0
 1, 3
Mesh Regions: 2
 0, 4, 3
 1, 2, 4
Seed Numbers: 2
 0
 1
Phase Numbers: 2
 0
 0

In this example, the polygon mesh contains a parallelogram
that has been divided into two triangles. In general, the regions do
not need to have the same number of facets.
For 3D meshes, the mesh facets should be an ordered list of point indices
that create the polygonal facet.

Note

Everything is indexed from 0 since this file is produced in Python.

Additional Formats

These additional output file formats are meant for processing and
interpretation by other programs.

The .poly POLY file contains a planar straight line graph (PSLG) and
can be read by the Triangle program from J. Shewchuk.
See .poly files [https://www.cs.cmu.edu/~quake/triangle.poly.html] from the Triangle documentation for more details.

The .vtk VTK legacy file format supports POLYDATA datasets.
The facets of a polyhedral mesh are written to the VTK file, but not the
region data, seed numbers, or phase numbers.
See File Formats for VTK Version 4.2 [https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf] for a guide to the VTK legacy format.

The .ply polygon file format is intended for 3D scans but can also store
the polygons and polyhedral facets of a polygonal mesh.
See PLY - Polygon File Format [http://paulbourke.net/dataformats/ply/] for a description and examples of ply files.

Triangular Mesh

The triangular mesh (or tetrahedral mesh in 3D) can be written to and read
from a .txt file.
It can also be written to .inp Abaqus input files, .vtk files for
3D meshes, and .node/.ele files like Triangle and TetGen.

Text File

The organization of the triangular mesh text file is similar to the
meshpy.triangle.MeshInfo [https://documen.tician.de/meshpy/tri-tet.html#meshpy.triangle.MeshInfo] and meshpy.tet.MeshInfo [https://documen.tician.de/meshpy/tri-tet.html#meshpy.tet.MeshInfo]
classes from MeshPy [https://documen.tician.de/meshpy/] .
The format for the text string file is:

Mesh Points: <numPoints>
 x1, y1(, z1) <- optional tab at line start
 x2, y2(, z2)
 ...
 xn, yn(, zn)
Mesh Elements: <numElements>
 e1_1, e1_2, e1_3(, e1_4)
 e2_1, e2_2, e2_3(, e2_4)
 ...
 en_1, en_2, en_3(, en_4)
Element Attributes: <numElements>
 a1,
 a2,
 ...
 an
Facets: <numFacets>
 f1_1, f1_2(, f1_3)
 f2_1, f2_2(, f2_3)
 ...
 fn_1, fn_2(, fn_3)
Facet Attributes: <numFacets>
 a1,
 a2,
 ...
 an

In MicroStructPy, the element attribute is the seed number associated with the
element.
The facet attribute is the facet number from the polygonal mesh, so all of
the triangular mesh facets with the same attribute make up a polygonal mesh
facet.

Note

Everything is indexed from 0 since this file is produced in Python.

Additional Formats

Triangular and tetrahedral meshes can be output to additional file formats for
processing and vizualization by other programs.
These include Abaqus input files, TetGen/Triangle standard outputs, and
the VTK legacy format.

The Abaqus input file option, format='abaqus' in TriMesh.write(),
creates an input file for the mesh that defines each grain as its own part.
It also creates surfaces between the grains and on the domain boundary for
applying boundary conditions and loads.

The TetGen/Triangle file option, format='tet/tri', creates .node,
.edge (or .face), and .ele files.
See Triangle [https://www.cs.cmu.edu/~quake/triangle.html] and TetGen’s File Formats [http://wias-berlin.de/software/tetgen/1.5/doc/manual/manual006.html] for more details on
these files and their format.

API

	microstructpy.cli

	microstructpy.geometry
	microstructpy.geometry.Box

	microstructpy.geometry.Circle

	microstructpy.geometry.Cube

	microstructpy.geometry.Ellipse

	microstructpy.geometry.Ellipsoid

	microstructpy.geometry.n_box.NBox

	microstructpy.geometry.n_sphere.NSphere

	microstructpy.geometry.Rectangle

	microstructpy.geometry.Sphere

	microstructpy.geometry.Square

	microstructpy.geometry.factory

	microstructpy.meshing
	microstructpy.meshing.PolyMesh

	microstructpy.meshing.TriMesh

	microstructpy.seeding
	microstructpy.seeding.Seed

	microstructpy.seeding.SeedList

	microstructpy.verification

microstructpy.cli

Command Line Interface.

This module contains the command line interface (CLI) for MicroStructPy.
The CLI primarily reads XML input files and creates a microstructure according
to those inputs. It can also run demo input files.

	
microstructpy.cli.dict_convert(dictionary, filepath='.')

	Convert dictionary from xmltodict [https://github.com/martinblech/xmltodict]

The xmltodict [https://github.com/martinblech/xmltodict] parse method creates dictionaries with values that
are all strings, rather than strings, floats, ints, etc.
This function recursively searches the dictionary for string values and
attempts to convert the dictionary values.

If a dictionary contains the key dist_type, it is assumed that
the corresponding name is a scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] statistical distribution
and the remaining keys are inputs for that distribution,
with two exceptions.
First, if the value of dist_type is cdf, then the remaining key
should be filename and its value should be the path to a CSV file,
where each row contains the (x, CDF) points along the CDF curve.
Second, if the value of dist_type is histogram, then the remaining
key should also be filename and its value should be the path to a CSV
file.
For the histogram, the first row of this CDF should be the n bin heights
and the second row should be the n+1 bin locations.

Additionally, if a key in the dictionary contains filename or
directory and the value associated with that key is a relative path,
then the filepath is converted from a relative to an absolute path using
the filepath input as the reference point.
This behavior can be switched off by setting filepath=False.

	Parameters

	
	dictionary (list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict], or collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]) – Dictionary or
dictionaries to be converted.

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Reference path to resolve relative paths.

	Returns

	A copy of the input where the string
values have been converted. If only one dict is passed into the
function, then an instance of collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] is
returned.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] or collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
microstructpy.cli.main()

	CLI calling function

	
microstructpy.cli.plot_poly(pmesh, phases, plot_files=['polymesh.png'], plot_axes=True, color_by='material', colormap='viridis', **edge_kwargs)

	Plot polygonal/polyhedral mesh

This function creates formatted plots of a PolyMesh.

	Parameters

	
	pmesh (PolyMesh) – Polygonal mesh to plot.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of phase dictionaries. See Phase Dictionaries
for more details.

	plot_files (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) List of files to save the output plot.
Defaults to saving the plot to polymesh.png.

	plot_axes (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Flag to turn the axes on or off.
True shows the axes, False removes them. Defaults to True.

	color_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘material’ | ‘seed number’ |
‘material number’} Option to choose how the polygons/polyhedra
are colored. Defaults to ‘material’.

	colormap (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Name of the matplotlib colormap to color
the seeds. Ignored if color_by=’material’. Defaults to ‘viridis’,
the standard matplotlib colormap.
See Choosing Colormaps in Matplotlib [https://matplotlib.org/tutorials/colors/colormaps.html] for more details.

	**edge_kwargs – Additional keyword arguments that will be passed to
PolyMesh.plot_facets() in 2D and
PolyMesh.plot() in 3D.

	
microstructpy.cli.plot_seeds(seeds, phases, domain, plot_files=[], plot_axes=True, color_by='material', colormap='viridis', **edge_kwargs)

	Plot seeds

This function creates formatted plots of a SeedList.

	Parameters

	
	seeds (SeedList) – Seed list to plot.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of phase dictionaries. See Phase Dictionaries
for more details.

	domain (from microstructpy.geometry) – Domain geometry.

	plot_files (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) List of files to save the output plot.
Defaults to saving the plot to polymesh.png.

	plot_axes (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Flag to turn the axes on or off.
True shows the axes, False removes them. Defaults to True.

	color_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘material’ | ‘seed number’ |
‘material number’} Option to choose how the polygons/polyhedra
are colored. Defaults to ‘material’.

	colormap (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Name of the matplotlib colormap to color
the seeds. Ignored if color_by=’material’. Defaults to ‘viridis’,
the standard matplotlib colormap.
See Choosing Colormaps in Matplotlib [https://matplotlib.org/tutorials/colors/colormaps.html] for more details.

	**edge_kwargs – additional keyword arguments that will be passed to
SeedList.plot().

	
microstructpy.cli.plot_tri(tmesh, phases, seeds, pmesh, plot_files=[], plot_axes=True, color_by='material', colormap='viridis', **edge_kwargs)

	Plot seeds

This function creates formatted plots of a TriMesh.

	Parameters

	
	tmesh (TriMesh) – Triangular mesh to plot.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of phase dictionaries. See Phase Dictionaries
for more details.

	seeds (SeedList) – List of seed geometries.

	pmesh (PolyMesh) – Polygonal mesh from which tmesh was generated.

	plot_files (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) List of files to save the output plot.
Defaults to saving the plot to polymesh.png.

	plot_axes (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Flag to turn the axes on or off.
True shows the axes, False removes them. Defaults to True.

	color_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘material’ | ‘seed number’ |
‘material number’} Option to choose how the polygons/polyhedra
are colored. Defaults to ‘material’.

	colormap (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Name of the matplotlib colormap to color
the seeds. Ignored if color_by=’material’. Defaults to ‘viridis’,
the standard matplotlib colormap.
See Choosing Colormaps in Matplotlib [https://matplotlib.org/tutorials/colors/colormaps.html] for more details.

	**edge_kwargs – Additional keyword arguments that will be passed to
TriMesh.plot().

	
microstructpy.cli.read_input(filename)

	Convert input file to dictionary

This function reads an input file and parses it into a dictionary.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of an XML input file.

	Returns

	Dictionary of run inputs.

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
microstructpy.cli.run(phases, domain, verbose=False, restart=True, directory='.', filetypes={}, rng_seeds={}, plot_axes=True, rtol='fit', edge_opt=False, edge_opt_n_iter=100, mesh_max_volume=inf, mesh_min_angle=0, mesh_max_edge_length=inf, verify=False, color_by='material', colormap='viridis', seeds_kwargs={}, poly_kwargs={}, tri_kwargs={})

	Run MicroStructPy

This is the primary run function for the package. It performs these steps:

	Create a list of un-positioned seeds

	Position seeds in domain

	Create a polygon mesh from the seeds

	Create a triangle mesh from the polygon mesh

	(optional) Perform mesh verification

	Parameters

	
	phases (list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Single phase dictionary or list of multiple
phase dictionaries. See Phase Dictionaries for more details.

	domain (from microstructpy.geometry) – The geometry of the
domain.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Option to run in verbose mode.
Prints status updates to the terminal. Defaults to False.

	restart (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Option to run in restart mode.
Saves caches at the end of each step and reads caches to restart
the analysis. Defaults to True.

	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) File path where outputs will be saved.
This path can either be relative to the current directory,
or an absolute path. Defaults to the current working directory.

	filetypes (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – (optional) Filetypes for the output files.
A dictionary containing many of the possible file types is:

filetypes = {'seeds': 'txt',
 'seeds_plot': ['eps',
 'pdf',
 'png',
 'svg'],
 'poly': ['txt', 'ply', 'vtk'],
 'poly_plot': 'png',
 'tri': ['txt', 'abaqus', 'vtk'],
 'tri_plot': ['png', 'pdf'],
 'verify_plot': 'pdf'
 }

If an entry is not included in the dictionary, then that output
is not saved. Default is an empty dictionary. If restart is
True, then ‘txt’ is added to the ‘seeds’, ‘poly’, and ‘tri’ fields.

	rng_seeds (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – (optional) The random number generator (RNG) seeds.
The dictionary values should all be non-negative integers.
Specifically, RNG seeds should be convertible to NumPy uint32 [https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html].
An example dictionary is:

rng_seeds = {'fraction': 0,
 'phase': 134092,
 'position': 1,
 'size': 95,
 'aspect_ratio': 2,
 'orienation': 2
 }

If a seed is not specified, the default value is 0.

	rtol (float [https://docs.python.org/3/library/functions.html#float] or str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) The relative overlap tolerance
between seeds. This parameter should be between 0 and 1.
The condition for two circles to overlap is:

\[|| x_2 - x_1 || + \text{rtol} \min(r_1, r_2) < r_1 + r_2\]

The default value is 'fit', which uses the mean and variance
of the size distribution to estimate a value for rtol.

	edge_opt (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) This option will maximize the minimum
edge length in the PolyMesh. The seeds associated with the
shortest edge are displaced randomly to find improvement and
this process iterates until n_iter attempts have been made
for a given edge. Defaults to False.

	edge_opt_n_iter (int [https://docs.python.org/3/library/functions.html#int]) – (optional) Maximum number of iterations per
edge during optimization. Ignored if edge_opt set to False.
Defaults to 100.

	mesh_max_volume (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The maximum volume (area in 2D)
of a mesh cell in the triangular mesh. Default is infinity,
which turns off the maximum volume quality setting.
Value should be strictly positive.

	mesh_min_angle (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The minimum interior angle,
in degrees, of a cell in the triangular mesh. For 3D meshes,
this is the dihedral angle between faces of the tetrahedron.
Defaults to 0, which turns off the angle quality constraint.
Value should be in the range 0-60.

	mesh_max_edge_length (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The maximum edge length of
elements along grain boundaries. Currently only supported in 2D.

	plot_axes (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Option to show the axes in output plots.
When False, the plots are saved without axes and very tight
borders. Defaults to True.

	verify (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Option to verify the output mesh against
the input phases. Defaults to False.

	color_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘material’ | ‘seed number’ |
‘material number’} Option to choose how the polygons/polyhedra
are colored. Defaults to ‘material’.

	colormap (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Name of the matplotlib colormap to color
the seeds. Ignored if color_by=’material’. Defaults to ‘viridis’,
the standard matplotlib colormap.
See Choosing Colormaps in Matplotlib [https://matplotlib.org/tutorials/colors/colormaps.html] for more details.

	seed_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional keyword arguments that will be passed to
SeedList.plot().

	poly_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments that will be passed to
PolyMesh.plot_facets() in 2D and
PolyMesh.plot() in 3D.

	tri_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments that will be passed to
TriMesh.plot().

	
microstructpy.cli.run_file(filename)

	Run an input file

This function reads an input file and runs it through the standard
workflow.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of an XML input file.

microstructpy.geometry

The geometry module contains classes for several 2D and 3D geometries.
The module also contains some N-D geometries, which are inherited by the
2D and 3D geometries.

2D Geometries

	microstructpy.geometry.Circle † ‡

	microstructpy.geometry.Ellipse † ‡

	microstructpy.geometry.Rectangle † ‡

	microstructpy.geometry.Square † ‡

3D Geometries

	microstructpy.geometry.Box ‡

	microstructpy.geometry.Cube ‡

	microstructpy.geometry.Ellipsoid †

	microstructpy.geometry.Sphere †

ND Geometries

	microstructpy.geometry.n_box.NBox

	microstructpy.geometry.n_sphere.NSphere

†: These classes may be used to define seed particles.

‡: These classes may be used to define the microstructure domain.

To assist with creating geometries, a factory method is included in the module:

	microstructpy.geometry.factory

Module Contents

	microstructpy.geometry.Box

	microstructpy.geometry.Circle

	microstructpy.geometry.Cube

	microstructpy.geometry.Ellipse

	microstructpy.geometry.Ellipsoid

	microstructpy.geometry.n_box.NBox

	microstructpy.geometry.n_sphere.NSphere

	microstructpy.geometry.Rectangle

	microstructpy.geometry.Sphere

	microstructpy.geometry.Square

	microstructpy.geometry.factory

microstructpy.geometry.Box

	
class microstructpy.geometry.Box(**kwargs)

	Bases: microstructpy.geometry.n_box.NBox

This class contains a generic, 3D box. The position and dimensions of the
box can be specified using any of the parameters below.

Without any parameters, this is a unit cube centered on the origin.

	Parameters

	
	side_lengths (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Side lengths.

	center (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Center of box.

	corner (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Bottom-left corner.

	limits (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Bounds of box.

	bounds (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Alias for limits.

	
plot(**kwargs)

	Plot the box.

This function adds an
mpl_toolkits.mplot3d.art3d.Poly3DCollection [https://matplotlib.org/api/_as_gen/mpl_toolkits.mplot3d.art3d.Poly3DCollection.html#mpl_toolkits.mplot3d.art3d.Poly3DCollection] to the current
axes. The keyword arguments are passed through to the Poly3DCollection.

	Parameters

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for Poly3DCollection.

	
within(points)

	Test if points are within n-box.

This function tests whether a point or set of points are within the
n-box. For the set of points, a list of booleans is returned to
indicate which points are within the n-box.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Flags set to True for points in geometry.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property bounds

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property corner

	bottom-left corner

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property limits

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property n_dim

	number of dimensions, 3

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property n_vol

	area, volume of n-box

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property sample_limits

	(lower, upper) bounds of the sampling region of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property volume

	volume of box, \(V=l_1 l_2 l_3\)

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.geometry.Circle

	
class microstructpy.geometry.Circle(**kwargs)

	Bases: microstructpy.geometry.n_sphere.NSphere

A 2D circle.

This class represents a two-dimensional circle. It is defined by
a center point and size parameter, which can be either radius or diameter.

Without parameters, this returns a unit circle centered on the origin.

	Parameters

	
	r (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The radius of the circle. Defaults to 1.

	center (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) The coordinates of the center.
Defaults to (0, 0).

	diameter – (optional) Alias for 2*r.

	radius – (optional) Alias for r.

	d – (optional) Alias for 2*r.

	size – (optional) Alias for 2*r.

	position – (optional) Alias for center.

	
approximate()

	Approximate the n-sphere with itself

Other geometries can be approximated by a set of circles or spheres.
For the n-sphere, this approximation is exact.

	Returns

	A list containing [(x, y, z, …, r)]

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
classmethod area_expectation(**kwargs)

	Expected value of area.

This function computes the expected value for the area of a circle.
The keyword arguments are the same as the class parameters.
The values can be constants (ints or floats), or a distribution from
the SciPy scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] module.

The expected value is computed by the following formula:

\[\mathbb{E}[A] = \pi \mathbb{E}[R^2] = \pi (\mu_R^2 + \sigma_R^2)\]

For example:

>>> from microstructpy.geometry import Circle
>>> Circle.area_expectation(r=1)
3.141592653589793
>>> from scipy.stats import norm
>>> Circle.area_expectation(r=norm(1, 1))
6.283185307179586

	Parameters

	**kwargs – Keyword arguments, see Circle.

	Returns

	Expected value of the area of the circle.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
classmethod best_fit(points)

	Find n-sphere of best fit for set of points.

This function takes a list of points and computes an n-sphere of
best fit, in an algebraic sense. This method was developed using the
a published writeup, which was extended from 2D to ND. 1

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of points to fit.

	Returns

	An instance of the class that fits the points.

	Return type

	NSphere

	1

	Circle fitting writup by Randy Bullock,
https://dtcenter.org/met/users/docs/write_ups/circle_fit.pdf

	
plot(**kwargs)

	Plot the circle.

This function adds a matplotlib.patches.Circle [https://matplotlib.org/api/_as_gen/matplotlib.patches.Circle.html#matplotlib.patches.Circle] to the
current axes. The keyword arguments are passed through to the
circle patch.

	Parameters

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for matplotlib.

	
reflect(points)

	Reflect points across surface.

This function reflects a point or set of points across the surface
of the n-sphere. Points at the center of the n-sphere are not
reflected.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points to reflect.

	Returns

	Reflected points.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
within(points)

	Test if points are within n-sphere.

This function tests whether a point or set of points are within the
n-sphere. For the set of points, a list of booleans is returned to
indicate which points are within the n-sphere.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Set to True for points in geometry.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property area

	area of cirle, \(A=\pi r^2\)

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property bound_max

	maximum bounding n-sphere

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property bound_min

	minimum interior n-sphere

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property d

	diameter of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property diameter

	diameter of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property limits

	list of (lower, upper) bounds for the bounding box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property n_dim

	number of dimensions, 2

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property position

	position of n-sphere.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property radius

	radius of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property sample_limits

	list of (lower, upper) bounds for the sampling region

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property size

	size (diameter) of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property volume

	alias for area

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.geometry.Cube

	
class microstructpy.geometry.Cube(**kwargs)

	A cube.

This class contains a generic, 3D cube. It is derived from the
Box and contains the side_length property, rather than
multiple side lengths.

Without any parameters, this is a unit cube centered on the origin.

	Parameters

	
	side_length (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Side length.

	center (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) Center of box.

	corner (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) Bottom-left corner.

	
plot(**kwargs)

	Plot the box.

This function adds an
mpl_toolkits.mplot3d.art3d.Poly3DCollection [https://matplotlib.org/api/_as_gen/mpl_toolkits.mplot3d.art3d.Poly3DCollection.html#mpl_toolkits.mplot3d.art3d.Poly3DCollection] to the current
axes. The keyword arguments are passed through to the Poly3DCollection.

	Parameters

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for Poly3DCollection.

	
within(points)

	Test if points are within n-box.

This function tests whether a point or set of points are within the
n-box. For the set of points, a list of booleans is returned to
indicate which points are within the n-box.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Flags set to True for points in geometry.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property bounds

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property corner

	bottom-left corner

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property limits

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property n_dim

	number of dimensions, 3

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property n_vol

	area, volume of n-box

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property sample_limits

	(lower, upper) bounds of the sampling region of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property side_length

	length of the side of the cube.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property volume

	volume of box, \(V=l_1 l_2 l_3\)

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.geometry.Ellipse

	
class microstructpy.geometry.Ellipse(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A 2-D ellipse geometry.

This class contains a 2-D ellipse. It is defined by a center point, axes
and an orientation.

Without any parameters, the ellipse defaults to a unit circle.

	Parameters

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Semi-major axis of ellipse. Defaults to 1.

	b (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Semi-minor axis of ellipse. Defaults to 1.

	center (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) The ellipse center.
Defaults to (0, 0).

	axes (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) A 2-element list of semi-axes, equivalent
to [a, b]. Defaults to [1, 1].

	size (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The diameter of a circle with equivalent
area. Defaults to 1.

	aspect_ratio (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The ratio of x-axis to y-axis
length. Defaults to 1.

	angle (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The counterclockwise rotation angle,
in degrees, measured from the +x axis.

	angle_deg (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The rotation angle, in degrees.

	angle_rad (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The rotation angle, in radians.

	matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The 2x2 rotation matrix.

	orientation (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) Alias for matrix.

	
approximate(x1=None)

	Approximate ellipse with a set of circles.

This function converts an ellipse into a set of circles.
It implements a published algorithm by Ilin and Bernacki. 1

Example

>>> import matplotlib.pyplot as plt
>>> import microstructpy as msp
>>> import numpy as np
>>> ellipse = msp.geometry.Ellipse(a=3, b=1)
>>> approx = ellipse.approximate(0.7)
>>> approx
array([[0. , 0. , 1.],
 [0.7 , 0. , 0.96889112],
 [1.38067777, 0. , 0.87276349],
 [2.00213905, 0. , 0.7063497],
 [2.5234414 , 0. , 0.45169729],
 [2.66666667, 0. , 0.33333333],
 [-0.7 , 0. , 0.96889112],
 [-1.38067777, 0. , 0.87276349],
 [-2.00213905, 0. , 0.7063497],
 [-2.5234414 , 0. , 0.45169729],
 [-2.66666667, 0. , 0.33333333]])
>>> ellipse.plot(edgecolor='k', facecolor='none', lw=3)
>>> t = np.linspace(0, 2 * np.pi)
>>> for x, y, r in approx:
... plt.plot(x + r * np.cos(t), y + r * np.sin(t), 'b')
>>> plt.xticks(np.unique(np.concatenate((approx[:, 0], (-3, 3)))))
>>> plt.yticks(np.unique(np.concatenate((approx[:, 1], (-1, 1)))))
>>> plt.axis('scaled')
>>> plt.grid(True, linestyle=':')
>>> plt.show()

Executing the code above produces Fig. 28.

[image: ../../_images/sphx_glr_plot_ellipse_001.png]
Fig. 28 Circular approximation of ellipse, after Ilin and Bernacki.

	Parameters

	x1 (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – (optional) Position of the first circle
along the +x axis. Defaults to 0.5x the shortest semi-axis.

	Returns

	An Nx3 list of the (x, y, r) data of each circle
approximating the ellipse.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – Thrown if max(a, b) < x1.

	1

	Ilin, D.N., and Bernacki, M., “Advancing Layer Algorithm
of Dense Ellipse Packing for Generating Statistically Equivalent
Polygonal Structures,” Granular Matter, vol. 18(3), pp. 43, 2016.

	
classmethod area_expectation(**kwargs)

	Expected value of area.

This function computes the expected value for the area of an ellipse.
The keyword arguments are the same as the input parameters of the
class. The keyword values can be either constants (ints or floats) or
distributions from the SciPy scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] module.

If an ellipse is specified by size, the expected value is computed
as follows.

\[\begin{split}\mathbb{E}[A] &= \frac{\pi}{4} \mathbb[S^2] \\
 &= \frac{\pi}{4} (\mu_S^2 + \sigma_S^2)\end{split}\]

If the ellipse is specified by independent distributions for each
semi-axis, the expected value is computed by:

\[\mathbb{E}[A] = \pi\, \mathbb{E}[A B] = \pi \mu_A \mu_B\]

If the ellipse is specified by the second semi-axis and the aspect
ratio, the expected value is computed by:

\[\begin{split}\mathbb{E}[A] &= \pi\, \mathbb{E}[K B^2] \\
 &= \pi \mu_K (\mu_B^2 + \sigma_B^2)\end{split}\]

Finally, if the ellipse is specified by the first semi-axis and the
aspect ratio, the expected value is computed by Monte Carlo:

\[\begin{split}\mathbb{E}[A] &= \pi\, \mathbb{E}\left[\frac{A^2}{K}\right] \\
 &\approx \frac{\pi}{n} \sum_{i=1}^n \frac{A_i}{K_i}\end{split}\]

where \(n=1000\).

	Parameters

	**kwargs – Keyword arguments, see
microstructpy.geometry.Ellipse.

	Returns

	Expected value of the area of the ellipse.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
best_fit(points)

	Find ellipse of best fit for points

This function computes the ellipse of best fit for a set of points.
It calls the least-squares-ellipse-fitting [https://github.com/bdhammel/least-squares-ellipse-fitting] package, which implements
a published fitting algorithm in Python. 2

The current instance of the class is used as an initial guess for
the ellipse of best fit. Since an ellipse can be expressed multiple
ways (e.g. rotate 90 degrees and flip the axes), this initial guess
is used to choose from the multiple parameter sets.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An Nx2 list of points to fit.

	Returns

	An instance of the class that best fits the points.

	Return type

	Ellipse

	2

	Halir, R., Flusser, J., “Numerically Stable Direct Least
Squares Fitting of Ellipses,” 6th International Conference in Central
Europe on Computer Graphics and Visualization, Vol. 98, 1998.
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.7559&rep=rep1&type=pdf)

	
plot(**kwargs)

	Plot the ellipse.

This function adds a matplotlib.patches.Ellipse [https://matplotlib.org/api/_as_gen/matplotlib.patches.Ellipse.html#matplotlib.patches.Ellipse] patch to the
current axes using matplotlib. The keyword arguments are passed to
the patch.

	Parameters

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for matplotlib.

	
reflect(points)

	Reflect points across surface.

This function reflects a point or set of points across the surface
of the ellipse. Points at the center of the ellipse are not
reflected.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Nx2 list of points to reflect.

	Returns

	Reflected points.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
within(points)

	Test if points are within ellipse.

This function tests whether a point or set of points are within the
ellipse. For the set of points, a list of booleans is returned to
indicate which points are within the ellipse.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Set to True for points in ellipse.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property angle_deg

	Rotation angle, in degrees

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property angle_rad

	Rotation angle, in radians

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property area

	Area of ellipse, \(A = \pi a b\)

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property aspect_ratio

	Ratio of x-axis length to y-axis length

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property axes

	List of semi-axes.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property bound_max

	Maximum bounding circle of ellipse, (x, y, r)

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property bound_min

	Minimum interior circle of ellipse, (x, y, r)

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property limits

	List of (lower, upper) bounds for the bounding box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property matrix

	Rotation matrix

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property n_dim

	Number of dimensions, 2

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property orientation

	Rotation matrix

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property sample_limits

	List of (lower, upper) bounds for the sampling region

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property size

	Diameter of equivalent area circle

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property volume

	Same as microstructpy.geometry.Ellipse.area

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.geometry.Ellipsoid

	
class microstructpy.geometry.Ellipsoid(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A 3D Ellipsoid

This class contains the data and functions for a 3D ellispoid.
It is defined by its center, axes, and orientation.

If multiple keywords are given for the shape of the ellipsoid, there
is no guarantee for which keywords are used.

	Parameters

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – (optional) First semi-axis of ellipsoid. Default is 1.

	b (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Second semi-axis of ellipsoid. Default is 1.

	c (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Third semi-axis of ellipsoid. Default is 1.

	center (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) The ellipsoid center.
Defaults to (0, 0, 0).

	axes (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) List of 3 semi-axes.
Defaults to (1, 1, 1).

	size (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The diameter of a sphere with equal volume.
Defaults to 2.

	ratio_ab (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The ratio of a to b.

	ratio_ac (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The ratio of a to c.

	ratio_bc (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The ratio of b to c.

	ratio_ba (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The ratio of b to a.

	ratio_ca (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The ratio of c to a.

	ratio_cb (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The ratio of c to b.

	rot_seq (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) List of rotations (deg). Each element of
the list should be an (axis, angle) tuple. The options for the
axis are: ‘x’, ‘y’, ‘z’, 1, 2, or 3.
For example:

rot_seq = [('x', 10), (2, -20), ('z', 85), ('x', 21)]

	rot_seq_deg (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Alias for rot_seq, with degrees
stated explicitly.

	rot_seq_rad (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Same format as rot_seq, except the
angles are expressed in radians.

	matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) A 3x3 rotation matrix expressing
the orientation of the ellipsoid. Defaults to the identity.

	position – (optional) Alias for center.

	orientation – (optional) Alias for matrix.

	
approximate(x1=None)

	Approximate Ellipsoid with Spheres

This function approximates the ellipsoid by a set of spheres.
It does so by approximating the x-z and y-z elliptical cross sections
with circles, then scaling those circles and promoting them to spheres.

See the documentation for
microstructpy.geometry.Ellipse.approximate() for more details.

	Parameters

	x1 (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Center position of the first sphere.
Default is 0.75x the minimum semi-axis.

	Returns

	An Nx4 list of the (x, y, z, r) data of the spheres
that approximate the ellipsoid.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
best_fit(points)

	Find ellipsoid of best fit.

This function takes a list of 3D points and computes the ellipsoid of
best fit for the points. It uses a published algorithm to fit the
ellipsoid, then attempts to define the axes in such a way that they
most align with this ellipsoid’s axes. 1

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list]) – Points to fit ellipsoid

	Returns

	The ellipsoid that best fits the points.

	Return type

	Ellipsoid

	1

	Turner, D. A., Anderson, I. J., Mason, J. C., and Cox,
M. G., “An Algorithm for Fitting an Ellipsoid to Data,” National
Physical Laboratory, 1999, The United Kingdom.
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2773&rep=rep1&type=pdf)

	
plot(**kwargs)

	Plot the ellipsoid.

This function uses the mpl_toolkits.mplot3d.Axes3D.plot_surface() [https://matplotlib.org/tutorials/toolkits/mplot3d.html#mpl_toolkits.mplot3d.Axes3D.plot_surface]
method to add an ellipsoid to the current axes. The keyword arguments
are passes through to the plot_surface function.

	Parameters

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for matplotlib.

	
reflect(points)

	Reflect points across surface.

This function reflects a point or set of points across the surface
of the ellipsoid. Points at the center of the ellipsoid are not
reflected.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points to reflect.

	Returns

	Reflected points.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
classmethod volume_expectation(**kwargs)

	Expected value of volume.

This function computes the expected value for the volume of an
ellipsoid. The keyword arguments are the same as the input parameters
for the class, microstructpy.geometry.Ellipsoid. The
values for these keywords can be either constants or distributions from
the SciPy scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] module.

The expected value is computed by the following formula:

\[\begin{split}\mathbb{E}[V] &= \mathbb{E}[\frac{4}{3}\pi A B C] \\
 &= \frac{4}{3}\pi \mathbb{E}[A] \mathbb{E}[B] \mathbb{E}[C] \\
 &= \frac{4}{3}\pi \mu_A \mu_B \mu_C\end{split}\]

If the ellisoid is specified by size and aspect ratios, then the
expected volume is computed by:

\[\begin{split}\mathbb{E}[V] &= \mathbb{E}[\frac{\pi}{6} S^3] \\
 &= \frac{\pi}{6} (\mu_S^3 + 3 \mu_S \sigma_S^2 + \gamma_{1, S} \sigma_S^3)\end{split}\]

If the ellipsoid is specified using a combination of semi-axes and
aspect ratios, then the expected volume is the mean of 1000 random
samples:

\[\mathbb{E}[V] \approx \frac{1}{n} \sum_{i=1}^n V_i\]

where \(n=1000\).

	Parameters

	**kwargs – Keyword arguments, see microstructpy.geometry.Ellipsoid.

	Returns

	Expected value of the volume of the sphere.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
within(points)

	Test if points are within ellipsoid.

This function tests whether a point or set of points are within the
ellipsoid. For the set of points, a list of booleans is returned to
indicate which points are within the ellipsoid.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Set to True for points in geometry.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property axes

	the 3 semi-axes of the ellipsoid

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property bound_max

	maximum bounding sphere, (x, y, z, r)

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property bound_min

	minimum interior sphere, (x, y, z, r)

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property coefficients

	coeffificients of equation,
\((A, B, C, D, E, F, G, H, K, L)\) in
\(Ax^2 + Bxy + Cxz + Dy^2 + Eyz + Fz^2 + Gx + Hy + Kz + L = 0\)

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property limits

	List of (lower, upper) bounds for the bounding box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property matrix

	A 3x3 rotation matrix

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property matrix_quadeq

	Matrix of the quadratic equation

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property matrix_quadform

	Matrix of the quadratic form

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property n_dim

	number of dimensions, 3

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property orientation

	A 3x3 rotation matrix

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property ratio_ab

	ratio of x-axis length to y-axis length

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property ratio_ac

	ratio of x-axis length to z-axis length

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property ratio_ba

	ratio of y-axis length to x-axis length

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property ratio_bc

	ratio of y-axis length to z-axis length

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property ratio_ca

	ratio of z-axis length to x-axis length

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property ratio_cb

	ratio of z-axis length to y-axis length

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property rot_seq_deg

	rotation sequence, with angles in degrees

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property rot_seq_rad

	rotation sequence, with angles in radiands

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property sample_limits

	List of (lower, upper) bounds for the sampling region

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property size

	diameter of equivalent volume sphere

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property volume

	volume of ellipsoid, \(V = \frac{4}{3}\pi a b c\)

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.geometry.n_box.NBox

	
class microstructpy.geometry.n_box.NBox(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

N-dimensional box

This class contains a generic, n-dimensinoal box.

	Parameters

	
	side_lengths (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Side lengths.

	center (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Center of box.

	corner (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Bottom-left corner.

	bounds (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Bounds of box. Expected in the form
[(xmin, xmax), (ymin, ymax), …].

	limits – Alias for bounds.

	matrix (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) Rotation matrix, nxn

	
within(points)

	Test if points are within n-box.

This function tests whether a point or set of points are within the
n-box. For the set of points, a list of booleans is returned to
indicate which points are within the n-box.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Flags set to True for points in geometry.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property bounds

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property corner

	bottom-left corner

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property limits

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property n_vol

	area, volume of n-box

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property sample_limits

	(lower, upper) bounds of the sampling region of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

microstructpy.geometry.n_sphere.NSphere

	
class microstructpy.geometry.n_sphere.NSphere(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An N-dimensional sphere.

This class represents a generic, n-dimensional sphere. It is defined by
a center point and size parameter, which can be either radius or diameter.

If multiple size or position keywords are given, there is no guarantee
whhich keywords are used to create the geometry.

	Parameters

	
	r (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The radius of the n-sphere.
Defaults to 1.

	center (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) The coordinates of the center.
Defaults to [].

	radius – Alias for r.

	d – Alias for 2*r`.

	diameter – Alias for 2*r.

	size – Alias for 2*r.

	position – Alias for center.

	
approximate()

	Approximate the n-sphere with itself

Other geometries can be approximated by a set of circles or spheres.
For the n-sphere, this approximation is exact.

	Returns

	A list containing [(x, y, z, …, r)]

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
classmethod best_fit(points)

	Find n-sphere of best fit for set of points.

This function takes a list of points and computes an n-sphere of
best fit, in an algebraic sense. This method was developed using the
a published writeup, which was extended from 2D to ND. 1

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of points to fit.

	Returns

	An instance of the class that fits the points.

	Return type

	NSphere

	1

	Circle fitting writup by Randy Bullock,
https://dtcenter.org/met/users/docs/write_ups/circle_fit.pdf

	
reflect(points)

	Reflect points across surface.

This function reflects a point or set of points across the surface
of the n-sphere. Points at the center of the n-sphere are not
reflected.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points to reflect.

	Returns

	Reflected points.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
within(points)

	Test if points are within n-sphere.

This function tests whether a point or set of points are within the
n-sphere. For the set of points, a list of booleans is returned to
indicate which points are within the n-sphere.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Set to True for points in geometry.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property bound_max

	maximum bounding n-sphere

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property bound_min

	minimum interior n-sphere

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property d

	diameter of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property diameter

	diameter of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property limits

	list of (lower, upper) bounds for the bounding box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property position

	position of n-sphere.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property radius

	radius of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property sample_limits

	list of (lower, upper) bounds for the sampling region

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property size

	size (diameter) of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.geometry.Rectangle

	
class microstructpy.geometry.Rectangle(**kwargs)

	Bases: microstructpy.geometry.n_box.NBox

This class contains a generic, 2D rectangle. The position and dimensions
of the box can be specified using any of the parameters below.

Without parameters, this returns a unit square centered on the origin.

	Parameters

	
	length (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Length of the rectangle.

	width (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Width of the rectangle. (optional)

	side_lengths (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Side lengths. Defaults to (1, 1).

	center (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Center of rectangle. Defaults to (0, 0).

	corner (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Bottom-left corner.

	bounds (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Bounds of rectangle. Expected to be in the
format [(xmin, xmax), (ymin, ymax)].

	limits – Alias for bounds.

	angle (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The rotation angle, in degrees.

	angle_deg (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The rotation angle, in degrees.

	angle_rad (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The rotation angle, in radians.

	matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The 2x2 rotation matrix.

	
approximate(x1=None)

	Approximate rectangle with a set of circles.

This method approximates a rectangle with a set of circles.
These circles are spaced uniformly along the long axis of the
rectangle with distance x1 between them.

Example

For a rectangle with length=2.5, width=1, and x1=0.3,
the approximation would look like Fig. 29.

[image: ../../_images/sphx_glr_plot_rectangle_001.png]
Fig. 29 Circular approximation of rectangle.

	Parameters

	x1 (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – (optional) Spacing between the circles.
If not specified, the spacing is 0.25x the length of the
shortest side.

	Returns

	An Nx3 array, where each row is a circle and the
columns are x, y, and r.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
classmethod area_expectation(**kwargs)

	Expected area of rectangle

This method computes the expected area of a rectangle. There are two
main ways to define the size of a rectangle: by the length and width
and by the bounds. If the input rectangle is defined by length and
width, the expected area is:

\[\mathbb{E}[A] = \mathbb{E}[L W] = \mu_L \mu_W\]

For the case where it is defined by upper and lower bounds:

\[\mathbb{E}[A] = \mathbb{E}[(X_U - X_L) (Y_U - Y_L)]\]

\[\mathbb{E}[A] =
\mu_{X_U}\mu_{Y_U} - \mu_{X_U} \mu_{Y_L} -
\mu_{X_L}\mu_{Y_U} + \mu_{X_L}\mu_{Y_L}\]

Example

>>> import scipy.stats
>>> import microstructpy as msp
>>> L = scipy.stats.uniform(loc=1, scale=2)
>>> W = scipy.stats.norm(loc=3.2, scale=5.1)
>>> L.mean() * W.mean()
6.4
>>> msp.geometry.Rectangle.area_expectation(length=L, width=W)
6.4

	Parameters

	**kwargs – Keyword arguments, same as Rectangle but the
inputs can be from the scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] module.

	Returns

	Expected/average area of rectangle.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
best_fit(points)

	Find rectangle of best fit for points

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of points to fit.

	Returns

	an instance of the class that best fits the points.

	Return type

	Rectangle

	
plot(**kwargs)

	Plot the rectangle.

This function adds a matplotlib.patches.Rectangle [https://matplotlib.org/api/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle] patch to the
current axes. The keyword arguments are passed through to the patch.

	Parameters

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for the patch.

	
within(points)

	Test if points are within n-box.

This function tests whether a point or set of points are within the
n-box. For the set of points, a list of booleans is returned to
indicate which points are within the n-box.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Flags set to True for points in geometry.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property angle

	Rotation angle of rectangle - degrees

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property angle_deg

	Rotation angle of rectangle - degrees

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property angle_rad

	Rotation angle of rectangle - radians

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property area

	Area of rectangle

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property bounds

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property corner

	bottom-left corner

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property length

	Length of rectangle, side length along 1st axis

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property limits

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property n_dim

	Number of dimensions, 2

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property n_vol

	area, volume of n-box

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property sample_limits

	(lower, upper) bounds of the sampling region of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property width

	Width of rectangle, side length along 2nd axis

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.geometry.Sphere

	
class microstructpy.geometry.Sphere(**kwargs)

	Bases: microstructpy.geometry.n_sphere.NSphere

A 3D sphere.

This class represents a three-dimensional circle. It is defined by
a center point and size parameter, which can be either radius or diameter.

Without input parameters, this defaults to a unit sphere centered at
the origin.

	Parameters

	
	r (float [https://docs.python.org/3/library/functions.html#float]) – (optional) The radius of the sphere.
Defaults to 1.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Same as r.

	d (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Alias for 2*r.

	diameter (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Alias for 2*r.

	size (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Alias for 2*r.

	center (list [https://docs.python.org/3/library/stdtypes.html#list], float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The coordinates of
the center. Defaults to [0, 0, 0].

	position (list [https://docs.python.org/3/library/stdtypes.html#list], float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional)
Alias for center.

	
approximate()

	Approximate the n-sphere with itself

Other geometries can be approximated by a set of circles or spheres.
For the n-sphere, this approximation is exact.

	Returns

	A list containing [(x, y, z, …, r)]

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
classmethod best_fit(points)

	Find n-sphere of best fit for set of points.

This function takes a list of points and computes an n-sphere of
best fit, in an algebraic sense. This method was developed using the
a published writeup, which was extended from 2D to ND. 1

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of points to fit.

	Returns

	An instance of the class that fits the points.

	Return type

	NSphere

	1

	Circle fitting writup by Randy Bullock,
https://dtcenter.org/met/users/docs/write_ups/circle_fit.pdf

	
plot(**kwargs)

	Plot the sphere.

This function uses the mpl_toolkits.mplot3d.Axes3D.plot_surface() [https://matplotlib.org/tutorials/toolkits/mplot3d.html#mpl_toolkits.mplot3d.Axes3D.plot_surface]
method to add the sphere to the current axes. The keyword arguments
are passed through to plot_surface.

	Parameters

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for plot_surface.

	
reflect(points)

	Reflect points across surface.

This function reflects a point or set of points across the surface
of the n-sphere. Points at the center of the n-sphere are not
reflected.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points to reflect.

	Returns

	Reflected points.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
classmethod volume_expectation(**kwargs)

	Expected value of volume.

This function computes the expected value for the volume of a sphere.
The keyword arguments are identical to the Sphere function.
The values for these keywords can be either constants or
scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] distributions.

The expected value is computed by the following formula:

\[\begin{split}\mathbb{E}[V] &= \mathbb{E}[\frac{4}{3}\pi R^3] \\
 &= \frac{4}{3}\pi \mathbb{E}[R^3] \\
 &= \frac{4}{3}\pi (\mu_R^3 + 3 \mu_R \sigma_R^2 + \gamma_{1, R} \sigma_R^3)\end{split}\]

	Parameters

	**kwargs – Keyword arguments, see microstructpy.geometry.Sphere.

	Returns

	Expected value of the volume of the sphere.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
within(points)

	Test if points are within n-sphere.

This function tests whether a point or set of points are within the
n-sphere. For the set of points, a list of booleans is returned to
indicate which points are within the n-sphere.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Set to True for points in geometry.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property bound_max

	maximum bounding n-sphere

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property bound_min

	minimum interior n-sphere

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property d

	diameter of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property diameter

	diameter of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property limits

	list of (lower, upper) bounds for the bounding box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property n_dim

	number of dimensions, 3

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property position

	position of n-sphere.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property radius

	radius of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property sample_limits

	list of (lower, upper) bounds for the sampling region

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property size

	size (diameter) of n-sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property volume

	volume of sphere

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.geometry.Square

	
class microstructpy.geometry.Square(**kwargs)

	A square.

This class contains a generic, 2D square. It is derived from the
microstructpy.geometry.Rectangle class and contains the
side_length property, rather than multiple side lengths.

	Parameters

	
	side_length (float [https://docs.python.org/3/library/functions.html#float]) – (optional) Side length. Defaults to 1.

	center (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Center of rectangle. Defaults to (0, 0).

	corner (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Bottom-left corner.

	
approximate(x1=None)

	Approximate square with a set of circles

This method approximates a square with a set of circles.
These circles are spaced uniformly along the edges of the square
with distance x1 between them.

Example

For a square with side_length=1, and x1=0.2,
the approximation would look like Fig. 30.

[image: ../../_images/sphx_glr_plot_rectangle_002.png]
Fig. 30 Circular approximation of square.

	Parameters

	x1 (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – (optional) Spacing between the circles.
If not specified, the spacing is 0.25x the side length.

	Returns

	An Nx3 array, where each row is a circle and the
columns are x, y, and r.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
classmethod area_expectation(**kwargs)

	Expected area of square

This method computes the expected area of a square with distributed
side length.
The expectation is:

\[\mathbb{E}[A] = \mathbb{E}[S^2] = \mu_S^2 + \sigma_S^2\]

Example

>>> import scipy.stats
>>> import microstructpy as msp
>>> S = scipy.stats.expon(scale=2)
>>> S.mean()^2 + S.var()
8.0
>>> msp.geometry.Square.area_expectation(side_length=S)
8.0

	Parameters

	**kwargs – Keyword arguments, same as Square but the
inputs can be from the scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats] module.

	Returns

	Expected/average area of the square.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
best_fit(points)

	Find rectangle of best fit for points

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of points to fit.

	Returns

	an instance of the class that best fits the points.

	Return type

	Rectangle

	
plot(**kwargs)

	Plot the rectangle.

This function adds a matplotlib.patches.Rectangle [https://matplotlib.org/api/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle] patch to the
current axes. The keyword arguments are passed through to the patch.

	Parameters

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for the patch.

	
within(points)

	Test if points are within n-box.

This function tests whether a point or set of points are within the
n-box. For the set of points, a list of booleans is returned to
indicate which points are within the n-box.

	Parameters

	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Point or list of points.

	Returns

	Flags set to True for points in geometry.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property angle

	Rotation angle of rectangle - degrees

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property angle_deg

	Rotation angle of rectangle - degrees

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property angle_rad

	Rotation angle of rectangle - radians

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property area

	Area of rectangle

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property bounds

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property corner

	bottom-left corner

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property length

	Length of rectangle, side length along 1st axis

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property limits

	(lower, upper) bounds of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property n_dim

	Number of dimensions, 2

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property n_vol

	area, volume of n-box

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property sample_limits

	(lower, upper) bounds of the sampling region of the box

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property side_length

	length of the side of the square.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
property width

	Width of rectangle, side length along 2nd axis

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.geometry.factory

	
geometry.factory(**kwargs)

	Factory method for geometries.

This function returns a geometry based on a string containing the
name of the geometry and keyword arguments defining the geometry.

Note

The function call is factory(name, **kwargs). Sphinx autodocs
has dropped the first parameter.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – {‘box’ | ‘cube’ | ‘ellipse’ | ‘ellipsoid’ | ‘circle’ |
‘rectangle’ | ‘square’ | ‘sphere’} Name of geometry.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arguments defining the geometry.

microstructpy.meshing

The meshing module contains two mesh classes,
the PolyMesh and the TriMesh.
The polygonal mesh contains a 2D or 3D tessellation of the microstructure
domain, while the triangular mesh is more suitable for direct numerical
simulation (finite element analysis).

Module Contents

	microstructpy.meshing.PolyMesh

	microstructpy.meshing.TriMesh

microstructpy.meshing.PolyMesh

	
class microstructpy.meshing.PolyMesh(points, facets, regions, seed_numbers=None, phase_numbers=None, facet_neighbors=None, volumes=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Polygonal/Polyhedral mesh.

The PolyMesh class contains the points, edges, regions, etc. in a polygon
(2D) or polyhedron (3D) mesh.

The points attribute is a numpy array containing the (x, y) or (x, y, z)
coordinates of each point in the mesh. This is the only attribute that
contains floating point numbers. The rest contain indices/integers.

The facets attribute describes the interfaces between the polygons/
polyhedra. In 2D, these interfaces are line segments and each facet
contains the indices of the points at each end of the line segment. These
indices are unorderd. In 3D, the interfaces are polygons so each facet
contains the indices of the points on that polygon. These indices are
ordered such that neighboring keypoints are connected by line segments
that form the polygon.

The regions attribute contains the area (2D) or volume (3D). In 2D, a
region is given by an ordered list of facets, or edges, that enclose the
polygon. In 3D, the region is given by an un-ordered list of facets,
or polygons, that enclose the polyhedron.

For each region, there is also an associated seed number and material
phase. These data are stored in the seed_number and phase_number
attributes, which have the same length as the regions list.

	Parameters

	
	points (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An Nx2 or Nx3 array of coordinates
in the mesh.

	facets (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of facets between regions. In 2D, this is a list
of edges (Nx2). In 3D, this is a list of 3D polygons.

	regions (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of polygons (2D) or polyhedra (3D), with each
element of the list being a list of facet indices.

	seed_numbers (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The seed number
associated with each region.
Defaults to 0 for all regions.

	phase_numbers (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The phase number
associated with each region.
Defaults to 0 for all regions.

	facet_neighbors (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The region
numbers on either side of each facet.
If not givien, a neighbor list is computed from regions.

	volumes (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The area/volume of each
region.
If not given, region volumes are calculated based on points,
facets, and regions.

	
classmethod from_file(filename)

	Read PolyMesh from file.

This function reads in a polygon mesh from a file and creates an
instance from that file. Currently the only supported file type
is the output from write() with the format='txt' option.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of file to read from.

	Returns

	The instance of the class written to the file.

	Return type

	PolyMesh

	
classmethod from_seeds(seedlist, domain, edge_opt=False, n_iter=100, verbose=False)

	Create from SeedList and a domain.

This function creates a polygon/polyhedron mesh from a seed list and
a domain. It relies on the pyvoro package, which wraps Voro++ [http://math.lbl.gov/voro++/].
The mesh is a Voronoi power diagram / Laguerre tessellationself.

The pyvoro package operates on rectangular domains, so other domains
are meshed in 2D by meshing in a bounding box then the boundary cells
are clipped to the domain boundary.
Currently non-rectangular domains in 3D are not supported.

This function also includes the option to maximize the shortest edges
in the polygonal/polyhedral mesh. Short edges cause numerical
issues in finite element analysis - setting edge_opt to True can
improve mesh quality with minimal changes to the microstructure.

	Parameters

	
	seedlist (SeedList) – A list of seeds in the microstructure.

	domain (from microstructpy.geometry) – The domain to be
filled by the seed.

	edge_opt (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) This option will maximize the minimum
edge length in the PolyMesh. The seeds associated with the
shortest edge are displaced randomly to find improvement and
this process iterates until n_iter attempts have been made
for a given edge. Defaults to False.

	n_iter (int [https://docs.python.org/3/library/functions.html#int]) – (optional) Maximum number of iterations per edge
during optimization. Ignored if edge_opt set to False.
Defaults to 100.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Print status of edge optimization to
screen. Defaults to False.

	Returns

	A polygon/polyhedron mesh.

	Return type

	PolyMesh

	
plot(index_by='seed', material=[], loc=0, **kwargs)

	Plot the mesh.

This function plots the polygon mesh.
In 2D, this creates a class:matplotlib.collections.PolyCollection
and adds it to the current axes.
In 3D, it creates a
mpl_toolkits.mplot3d.art3d.Poly3DCollection [https://matplotlib.org/api/_as_gen/mpl_toolkits.mplot3d.art3d.Poly3DCollection.html#mpl_toolkits.mplot3d.art3d.Poly3DCollection] and
adds it to the current axes.
The keyword arguments are passed though to matplotlib.

	Parameters

	
	index_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘facet’ | ‘material’ | ‘seed’}
Flag for indexing into the other arrays passed into the
function. For example,
plot(index_by='material', color=['blue', 'red']) will plot
the regions with phase_number equal to 0 in blue, and
regions with phase_number equal to 1 in red. The facet
option is only available for 3D plots. Defaults to ‘seed’.

	material (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Names of material phases. One entry
per material phase (the index_by argument is ignored).
If this argument is set, a legend is added to the plot with
one entry per material.

	loc (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) The location of the legend,
if ‘material’ is specified. This argument is passed directly
through to matplotlib.pyplot.legend() [https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend]. Defaults to 0,
which is ‘best’ in matplotlib.

	**kwargs – Keyword arguments for matplotlib.

	
plot_facets(index_by='seed', hide_interior=True, **kwargs)

	Plot PolyMesh facets.

This function plots the facets of the polygon mesh, rather than the
regions.
In 2D, it adds a matplotlib.collections.LineCollection [https://matplotlib.org/api/collections_api.html#matplotlib.collections.LineCollection] to the
current axes.
In 3D, it adds a
mpl_toolkits.mplot3d.art3d.Poly3DCollection [https://matplotlib.org/api/_as_gen/mpl_toolkits.mplot3d.art3d.Poly3DCollection.html#mpl_toolkits.mplot3d.art3d.Poly3DCollection]
with facecolors='none'.
The keyword arguments are passed though to matplotlib.

	Parameters

	
	index_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘facet’ | ‘material’ | ‘seed’}
Flag for indexing into the other arrays passed into the
function. For example,
plot(index_by='material', color=['blue', 'red']) will plot
the regions with phase_number equal to 0 in blue, and
regions with phase equal to 1 in red. The facet option is
only available for 3D plots. Defaults to ‘seed’.

	hide_interior (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, removes interior facets from the
output plot. This avoids occasional matplotlib issue where
interior facets are shown in output plots.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for matplotlib.

	
write(filename, format='txt')

	Write the mesh to a file.

This function writes the polygon/polyhedron mesh to a file.
See the Polygonal Mesh section of the
Output File Formats guide for more information about the available
output file formats.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to be written.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘txt’ | ‘poly’ | ‘ply’ | ‘vtk’ }
Format of the data in the file. Defaults to 'txt'.

microstructpy.meshing.TriMesh

	
class microstructpy.meshing.TriMesh(points, elements, element_attributes=None, facets=None, facet_attributes=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Triangle/Tetrahedron mesh.

The TriMesh class contains the points, facets, and elements in a triangle/
tetrahedron mesh, also called an unstructured grid.

The points attribute is an Nx2 or Nx3 list of points in the mesh.
The elements attribute contains the Nx3 or Nx4 list of the points at
the corners of each triangle/tetrahedron. A list of facets can also be
included, though it is optional and does not need to include every facet
in the mesh. Attributes can also be assigned to the elements and facets,
though they are also optional.

	Parameters

	
	points (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of coordinates in the mesh.

	elements (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of indices of the points at
the corners of each element. The shape should be Nx3 in 2D or
Nx4 in 3D.

	element_attributes (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) A number
associated with each element.
Defaults to None.

	facets (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) A list of facets in the
mesh. The shape should be Nx2 in 2D or Nx3 in 3D.
Defaults to None.

	facet_attributes (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) A number
associated with each facet.
Defaults to None.

	
classmethod from_file(filename)

	Read TriMesh from file.

This function reads in a triangular mesh from a file and creates an
instance from that file. Currently the only supported file type
is the output from write() with the format='str' option.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of file to read from.

	Returns

	An instance of the class.

	Return type

	TriMesh

	
classmethod from_polymesh(polymesh, phases=None, min_angle=0, max_volume=inf, max_edge_length=inf)

	Create TriMesh from PolyMesh.

This constuctor creates a triangle/tetrahedron mesh from a polygon
mesh (PolyMesh). Polygons of the same seed number are
merged and the element attribute is set to the seed number it is
within. The facets between seeds are saved to the mesh and the index
of the facet is stored in the facet attributes.

Since the PolyMesh can include phase numbers for each region,
additional information about the phases can be included as an input.
The “phases” input should be a list of material phase dictionaries,
formatted according to the Phase Dictionaries guide.

The minimum angle, maximum volume, and maximum edge length options
provide quality controls for the mesh. The phase type option can take
one of several values, described below.

	crystalline: granular, solid

	amorphous: glass, matrix

	void: crack, hole

The crystalline option creates a mesh where cells of the same seed
number are merged, but cells are not merged across seeds. _This is
the default material type._

The amorphous option creates a mesh where cells of the same
phase number are merged to create an amorphous region in the mesh.

Finally, the void option will merge neighboring void cells and
treat them as holes in the mesh.

	Parameters

	
	polymesh (PolyMesh) – A polygon/polyhedron mesh.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) A list of dictionaries containing
options for each phase.
Default is
{'material_type': 'solid', 'max_volume': float('inf')}.

	min_angle (float [https://docs.python.org/3/library/functions.html#float]) – The minimum interior angle of an element.

	max_volume (float [https://docs.python.org/3/library/functions.html#float]) – The default maximum cell volume, used if one
is not set for each phase.

	max_edge_length (float [https://docs.python.org/3/library/functions.html#float]) – The maximum edge length of elements
along grain boundaries. Currently only supported in 2D.

	
plot(index_by='element', material=[], loc=0, **kwargs)

	Plot the mesh.

This method plots the mesh using matplotlib.
In 2D, this creates a matplotlib.collections.PolyCollection [https://matplotlib.org/api/collections_api.html#matplotlib.collections.PolyCollection]
and adds it to the current axes.
In 3D, it creates a
mpl_toolkits.mplot3d.art3d.Poly3DCollection [https://matplotlib.org/api/_as_gen/mpl_toolkits.mplot3d.art3d.Poly3DCollection.html#mpl_toolkits.mplot3d.art3d.Poly3DCollection] and
adds it to the current axes.
The keyword arguments are passed though to matplotlib.

	Parameters

	
	index_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘element’ | ‘attribute’}
Flag for indexing into the other arrays passed into the
function. For example,
plot(index_by='attribute', color=['blue', 'red']) will plot
the elements with element_attribute equal to 0 in blue, and
elements with element_attribute equal to 1 in red.
Note that in 3D the facets are plotted instead of the elements,
so kwarg lists must be based on facets and
facet_attributes. Defaults to ‘element’.

	material (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Names of material phases. One entry
per material phase (the index_by argument is ignored).
If this argument is set, a legend is added to the plot with
one entry per material. Note that the element_attributes
in 2D or the facet_attributes in 3D must be the material
numbers for the legend to be formatted properly.

	loc (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) The location of the legend,
if ‘material’ is specified. This argument is passed directly
through to matplotlib.pyplot.legend() [https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend]. Defaults to 0,
which is ‘best’ in matplotlib.

	**kwargs – Keyword arguments that are passed through to matplotlib.

	
write(filename, format='txt', seeds=None, polymesh=None)

	Write mesh to file.

This function writes the contents of the mesh to a file.
The format options are ‘abaqus’, ‘tet/tri’, ‘txt’, and ‘vtk’.
See the Triangular Mesh section of the Output File Formats
guide for more details on these formats.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file to write. In the cases of
TetGen/Triangle, this is the basename of the files.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – {‘abaqus’ | ‘tet/tri’ | ‘txt’ | ‘vtk’}
(optional) The format of the output file.
Default is ‘txt’.

	seeds (SeedList) – (optional) List of seeds. If given, VTK files
will also include the phase number of of each element in the
mesh. This assumes the element_attributes
field contains the seed number of each element.

	polymesh (PolyMesh) – (optional) Polygonal mesh used for
generating the triangular mesh. If given, will add surface
unions to Abaqus files - for easier specification of
boundary conditions.

microstructpy.seeding

The seeding module contains two classes: Seed and SeedList.
The single Seed contains the geometry, phase number, and position
of a seed, while a SeedList functions much like a list of
Seed instances, but with more methods.

Module Contents

	microstructpy.seeding.Seed

	microstructpy.seeding.SeedList

microstructpy.seeding.Seed

	
class microstructpy.seeding.Seed(seed_geometry, phase=0, breakdown=None, position=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Seed particle

The Seed class contains the information about a single seed in the mesh.
These seeds have a geometry (from microstructpy.geometry),
a phase number, a breakdown, and a position.

	Parameters

	
	seed_geometry (from microstructpy.geometry) – The geometry of
the seed.

	phase (int [https://docs.python.org/3/library/functions.html#int]) – (optional) The phase number of the seed.
Defaults to 0.

	breakdown (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The circle/sphere
approximation of this grain. The format for this input is:

x y r
breakdown_2D = [(2, 3, 1),
 (0, 0, 4),
 (-2, 4, 8)]

x y z r
breakdown_3D = [(3, -1, 2, 1),
 (0, 2, -1, 1)]

The default behavior is to call the approximate() function
of the geometry.

	position (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The coordinates of the
seed. See position for more details.
Defaults to the origin.

	
classmethod factory(seed_type, phase=0, breakdown=None, position=None, **kwargs)

	Factory method for seeds

This function returns a seed based on the seed type and keyword
arguments associated with that type. The currently supported types
are:

	circle

	ellipse

	ellipsoid

	rectangle

	sphere

	square

If the seed_type is not on this list, an error is thrown.

	Parameters

	
	seed_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of seed, from list above.

	phase (int [https://docs.python.org/3/library/functions.html#int]) – (optional) Material phase number of seed.
Defaults to 0.

	breakdown (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) List of circles or
spheres that approximate the geometry. The list should be
formatted as follows:

breakdown = [(x1, y1, z1, r1),
 (x2, y2, z2, r2),
 ...]

The breakdown will be automatically generated if not provided.

	position (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) The coordinates of
the seed. Default is the origin.

	**kwargs – Keyword arguments that define the size, shape, etc of the
seed geometry.

	Returns

	An instance of the class.

	Return type

	Seed

	
classmethod from_str(seed_str)

	Create seed from a string.

This method creates a seed particle from a string representation.
This is used when reading in seeds from a file.

	Parameters

	seed_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – String representation of the seed.

	Returns

	An instance of a Seed derived class.

	Return type

	Seed

	
plot(**kwargs)

	Plot the seed

This function plots the geometry of the seed. The keyword arguments
are passed through to matplotlib.
See the plot methods in microstructpy.geometry for more
details.

	Parameters

	**kwargs – Plotting keyword arguments.

	
plot_breakdown(**kwargs)

	Plot breakdown of seed

This function plots the circle/sphere breakdown of the seed. In 2D,
this adds a matplotlib.collections.PatchCollection [https://matplotlib.org/api/collections_api.html#matplotlib.collections.PatchCollection]
to the current axes.

	Parameters

	**kwargs – Matplotlib keyword arguments.

	
property limits

	The (lower, upper) bounds of the seed

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property position

	Position of the seed

This is the location of the seed center.

Note

If the breakdown of the seed has been populated, the setter
function will update the position of the center and translate
the breakdown circles/spheres.

	
property volume

	The area (2D) or volume (3D) of the seed

	Type

	float [https://docs.python.org/3/library/functions.html#float]

microstructpy.seeding.SeedList

	
class microstructpy.seeding.SeedList(seeds=[])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

List of seed geometries.

The SeedList is similar to a standard Python list, but contains instances
of the Seed class. It can be generated from a list of Seeds,
by creating enough seeds to fill a given volume, or by reading the content
of a cache text file.

	Parameters

	seeds (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) List of Seed instances.

	
append(seed)

	Append seed

This function appends a seed to the list.

	Parameters

	seed (Seed) – The seed to append to the list

	
extend(seeds)

	Extend seed list

This function adds a list of seeds to the end of the seed list.

	Parameters

	seeds (list [https://docs.python.org/3/library/stdtypes.html#list] or SeedList) – List of seeds

	
classmethod from_file(filename)

	Create seed list from file containing list of seeds

This function creates a seed list from a file containing a list of
seeds. This file should contain the string representations of seeds,
separated by a newline character (which is the behavior of
write()).

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File containing the seed list.

	Returns

	Instance of class.

	Return type

	SeedList

	
classmethod from_info(phases, volume, rng_seeds={})

	Create seed list from microstructure information

This function creates a seed list from information about the
microstruture. The “phases” input should be a list of material
phase dictionaries, formatted according to the Phase Dictionaries
guide.

The “volume” input is the minimum volume of the list of seeds. Seeds
will be added to the list until this volume threshold is crossed.

Finally, the “rng_seeds” input is a dictionary of random number
generator (RNG) seeds for each parameter of the seed geometries.
For example, if one of the phases uses “size” to define the seeds,
then “size” could be a keyword of the “rng_seeds” input. The value
should be a non-negative integer, to seed the RNG for size.
The default RNG seed is 0.

Note

If two or more parameters have the same RNG seed and the same
kernel of the distribution, those parameters will not be
correlated. This method updates RNG seeds based on the order that
distributions are sampled to avoid correlation between independent
random variables.

	Parameters

	
	phases (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of phase information, see
Phase Dictionaries for a guide.

	volume (float [https://docs.python.org/3/library/functions.html#float]) – The total area/volume of the seeds in the list.

	rng_seeds (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – (optional) Dictionary of RNG seeds for each
step in the seeding process. The dictionary keys should match
shape parameters in phases. For example:

rng_seeds = {
 'size': 0,
 'angle': 3,
}

	Returns

	An instance of the class containing seeds prescribed by
the phase information and filling the given volume.

	Return type

	SeedList

	
plot(index_by='seed', material=[], loc=0, **kwargs)

	Plot the seeds in the seed list.

This function plots the seeds contained in the seed list.
In 2D, the seeds are grouped into matplotlib collections to reduce
the computational load. In 3D, matplotlib does not have patches, so
each seed is rendered as its own surface.

Additional keyword arguments can be specified and passed through to
matplotlib. These arguments should be either single values
(e.g. edgecolors='k'), or lists of values that have the same
length as the seed list.

	Parameters

	
	index_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘material’ | ‘seed’}
Flag for indexing into the other arrays passed into the
function. For example,
plot(index_by='material', color=['blue', 'red']) will plot
the seeds with phase equal to 0 in blue, and seeds with
phase equal to 1 in red. Defaults to ‘seed’.

	material (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Names of material phases. One entry
per material phase (the index_by argument is ignored).
If this argument is set, a legend is added to the plot with
one entry per material.

	loc (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) The location of the legend,
if ‘material’ is specified. This argument is passed directly
through to matplotlib.pyplot.legend() [https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend]. Defaults to 0,
which is ‘best’ in matplotlib.

	**kwargs – Keyword arguments to pass to matplotlib

	
plot_breakdown(index_by='seed', material=[], loc=0, **kwargs)

	Plot the breakdowns of the seeds in seed list.

This function plots the breakdowns of seeds contained in the seed list.
In 2D, the breakdowns are grouped into matplotlib collections to reduce
the computational load. In 3D, matplotlib does not have patches, so
each breakdown is rendered as its own surface.

Additional keyword arguments can be specified and passed through to
matplotlib. These arguments should be either single values
(e.g. edgecolors='k'), or lists of values that have the same
length as the seed list.

	Parameters

	
	index_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) {‘material’ | ‘seed’}
Flag for indexing into the other arrays passed into the
function. For example,
plot(index_by='material', color=['blue', 'red']) will plot
the seeds with phase equal to 0 in blue, and seeds with
phase equal to 1 in red. Defaults to ‘seed’.

	material (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Names of material phases. One entry
per material phase (the index_by argument is ignored).
If this argument is set, a legend is added to the plot with
one entry per material.

	loc (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) The location of the legend,
if ‘material’ is specified. This argument is passed directly
through to matplotlib.pyplot.legend() [https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend]. Defaults to 0,
which is ‘best’ in matplotlib.

	**kwargs – Keyword arguments to pass to matplotlib

	
position(domain, pos_dists={}, rng_seed=0, hold=[], max_attempts=10000, rtol='fit', verbose=False)

	Position seeds in a domain

This method positions the seeds within a domain. The “domain” should be
a geometry instance from the microstructpy.geometry module.

The “pos_dist” input is for phases with custom position distributions,
the default being a uniform random distribution.
For example:

import scipy.stats
mu = [0.5, -0.2]
sigma = [[2.0, 0.3], [0.3, 0.5]]
pos_dists = {2: scipy.stats.multivariate_normal(mu, sigma),
 3: ['random',
 scipy.stats.norm(0, 1)]
 }

Here, phases 0 and 1 have the default distribution, phase 2 has a
bivariate normal position distribution, and phase 3 is uniform in the
x and normally distributed in the y. Multivariate distributions are
described in the multivariate section of the scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats]
documentation.

The position of certain seeds can be held fixed during the positioning
process using the “hold” input. This should be a list of booleans,
where False indicates a seed should not be held fixed and True
indicates that it should be held fixed. The default behavior is to not
hold any seeds fixed.

The “rtol” parameter governs the relative overlap tolerable between
seeds. Setting rtol to 0 means that there is no overlap, while a value
of 1 means that one seed’s center is on the edge of another seed.
The default value is ‘fit’, which determines a tolerance between 0 and
1 based on the ratio of standard deviation to mean in grain volumes.

	Parameters

	
	domain (from microstructpy.geometry) – The domain of the
microstructure.

	pos_dists (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – (optional) Position distributions for each
phase, formatted like the example above.
Defaults to uniform random throughout the domain.

	rng_seed (int [https://docs.python.org/3/library/functions.html#int]) – (optional) Random number generator (RNG) seed
for positioning the seeds. Should be a non-negative integer.

	hold (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) List of booleans for
holding the positions of seeds.
Defaults to False for all seeds.

	max_attempts (int [https://docs.python.org/3/library/functions.html#int]) – (optional) Number of random trials before
removing a seed from the list.
Defaults to 10,000.

	rtol (str [https://docs.python.org/3/library/stdtypes.html#str] or float [https://docs.python.org/3/library/functions.html#float]) – (optional) The relative overlap tolerance
between seeds. This parameter should be between 0 and 1.
Using the ‘fit’ option, a function will determine the value
for rtol based on the mean and standard deviation in seed
volumes.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) This option will print a running
counter of how many seeds have been positioned.
Defaults to False.

	
write(filename, format='txt')

	Write seed list to a text file

This function writes out the seed list to a file. The format of the
file can be either ‘txt’ or ‘vtk’. The content of the ‘txt’ file
is human-readable and can be read by the
SeedList.from_file() method.
The ‘vtk’ option creates a VTK legacy file with the grain geometries.

For grains that are non-spherical, the spherical breakdown of the seed
is output instead of the seed itself.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File to write the seed list.

microstructpy.verification

Verification

This module contains functions related to mesh verification.

	
microstructpy.verification.error_stats(fit_seeds, seeds, phases, poly_mesh=None, verif_mask=None)

	Error statistics for seeds

This function creates a dictionary of error statistics for each of the
input distributions in the phases.

	Parameters

	
	fit_seeds (SeedList) – List of seeds of best fit.

	seeds (SeedList) – List of seeds.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input phase dictionaries.

	poly_mesh (PolyMesh) – (optional) Polygonal/polyhedral mesh.

	verif_mask (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) Mask for seeds to
be included in the analysis. Defaults to all True.

	Returns

	List with the same size and dictionary keywords as phases,
but with error statistics dictionaries in each entry.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
microstructpy.verification.mle_phases(seeds, phases, poly_mesh=None, verif_mask=None)

	Get maximum likelihood estimators (MLEs) for phases

This function finds distributions in the list of phases and computes the
MLE parameters for those distributions. The returned value is a list of
phases with the same length and dictionary keywords, except the
distributions are replaced with MLE distributions (based on the seeds).
Constant values are replaced with the mean of the seed values.

Note that the directional statistics are not used - so the results for
orientation angles and matrices are unreliable.

Also note that SciPy currently does not support MLEs for discrete random
variables. Any discrete distributions will be given a histogram output.

Note

Directional statistics are not used and as such the results for
orientation angles and matrices are unreliable. The only exception
is normally distributed orientation angles.

	Parameters

	
	seeds (SeedList) – List of seeds.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input phase dictionaries.

	poly_mesh (PolyMesh) – (optional) Polygonal/polyhedral mesh.

	verif_mask (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (optional) Mask for which
seeds to include in the MLE parameter calculation. Default is
True for all seeds.

	
microstructpy.verification.plot_distributions(seeds, phases, dirname='.', ext='png', poly_mesh=None, verif_mask=None)

	Plot comparison between input and output distributions

This function takes seeds and compares them against the input phases.
A polygon mesh can be included for cases where grains are given an
area or volume distribution, rather than size/shape/etc.

This function creates both PDF and CDF plots.

	Parameters

	
	seeds (SeedList) – List of seeds to compare.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of phase dictionaries.

	dirname (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Plot output directory.
Defaults to ..

	ext (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) File extension(s) of the output plots.
Defaults to 'png'.

	poly_mesh (PolyMesh) – (optional) Polygonal mesh, useful for phases
with an area or volume distribution.

	Returns

	none, creates plot files.

	
microstructpy.verification.plot_volume_fractions(vol_fracs, phases, filename='volume_fractions.png')

	Plot volume fraction verification

This function creates a bar chart comparing the input and output volume
fractions. If the input volume fraction is distributed, the top of the
bar will be a curve representing the CDF of the distribution.

	Parameters

	
	vol_fracs (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Output volume fractions.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of phase dictionaries

	filename (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) Filename(s) to save the plot.
Defaults to volume_fractions.png.

	Returns

	none, writes plot to file.

	
microstructpy.verification.seeds_of_best_fit(seeds, phases, pmesh, tmesh)

	Calculate seed geometries of best fit

This function computes the seeds of best fit for the resultant polygonal
and triangular meshes. It calls the the best_fit function of each
seed’s geometry, then copies the other seed attributes to create a new
SeedList.

The points on the faces of the grains are used to determine a fit geometry.
Points on the exterior of the domain are not used since they would alter
the shape of the best fit seed.

	Parameters

	
	seeds (SeedList) – List of seed geometries.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of material phases. See Phase Dictionaries
for more information on formatting.

	pmesh (PolyMesh) – Resultant polygonal/polyhedral mesh.

	tmesh (TriMesh) – Resultant triangular/tetrahedral mesh.

	Returns

	List of seeds of best fit.

	Return type

	SeedList

	
microstructpy.verification.volume_fractions(poly_mesh, n_phases)

	Verify volume fractions

This function computes the volume fractions of each phase in the output
mesh. It does so by summing the volumes of the cells in the polygonal
mesh.

	Parameters

	
	poly_mesh (PolyMesh) – The polygonal/polyhedral mesh.

	n_phases (int [https://docs.python.org/3/library/functions.html#int]) – Number of phases.

	Returns

	Volume fractions of each phase in the poly mesh.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
microstructpy.verification.write_error_stats(errs, phases, filename='error_stats.txt')

	Write error statistics to file

This function takes previously computed error statistics and writes them
to a human-readable text file.

	Parameters

	
	errs (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of error statistics for each input phase parameter.
Organized the same as phases.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input phases. See Phase Dictionaries for
more details.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) The name of the file to contain the
error statistics. Defaults to error_stats.txt.

	
microstructpy.verification.write_mle_phases(inp_phases, out_phases, filename='mles.txt')

	Write MLE parameters in a table

This function writes out a text file containing the input parameters and
maximum likelihood estimators (MLEs) for the outputs.

	Parameters

	
	inp_phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input phase dictionaries.

	out_phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of output phase dictionaries.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Filename of the output table.
Defaults to mles.txt.

	Returns

	none, writes file.

	
microstructpy.verification.write_volume_fractions(vol_fracs, phases, filename='volume_fractions.txt')

	Write volume fractions to a file

Write the volume fractions verification out to a file.
The output columns are:

	Phase number

	Phase name

	Input relative volume (average, if distributed)

	Output relative volume

	Input volume fraction (average, if distributed)

	Output volume fraction

The first three lines of the output file are headings.

	Parameters

	
	vol_fracs (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Volume fractions of the output mesh.

	phases (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of phase dictionaries.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Name of file to write.
Defaults to volume_fractions.txt.

	Returns

	none, prints formatted volume fraction verification table to file

Troubleshooting

This page addresses some problems that may be encountered with MicroStructPy.
If this page does not address your problem, please submit an issue through the
package GitHub [https://github.com/kip-hart/MicroStructPy] page.

Installation

These are problems encountered when installing MicroStructPy.

MeshPy fails to install

Problem Description

When installing the package, either through PyPI as
pip install microstructpy or from the source as pip install -e . in
the top-level directory, an error message appears during the meshpy install.
The error message indicates that Visual Studio cannot find the pybind11
headers.

Problem Solution

Install pybind11 first by running pip install pybind11, then try to
install MicroStructPy.

Command Line Interface

These are problems encountered when running microstructpy input_file.xml.

Command not found on Linux

Problem Description

The MicroStructPy package installs without a problem, however on running
microstructpy example_file.xml the following message appears:

microstructpy: command not found

Problem Solution

The command line interface (CLI) is install to a directory that is not in
the PATH variable. Check for the CLI in ~/.local/bin and if it is there,
add the following to your ~/.bash_profile file:

export PATH=$PATH:~/.local/bin

then source the .bash_profile file by running source ~/.bash_profile.

‘tkinter’ not found on Linux

Problem Description

The MicroStructPy package installs without a problem, however on running
microstructpy example_file.xml the following error is raised:

ModuleNotFoundError: No module named 'tkinter'

Problem Solution

To install tkinter for Python 3 on Linux, run the following command:

sudo apt-get install python3-tk

For Python 2, run the following instead:

sudo apt-get install python-tk

Program quits/segfaults while calculating Voronoi diagram

Problem Description

During the calculating Voronoi diagram step, the program either quits or
segfaults.

Problem Solution

This issue was experienced while running 32-bit Python with a large number of
seeds. Python ran out of memory addresses and segfaulted. Switching from 32-bit
to 64-bit Python solved the problem.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

1.3.3 [https://github.com/kip-hart/MicroStructPy/compare/v1.3.2...v1.3.3] - 2020-08-31

Added

	Helper functions for SeedList class.

Fixed

	Dictionary conversion issue with lists of SciPy distributions.

	XML tags in documentation on position distributions.

1.3.2 [https://github.com/kip-hart/MicroStructPy/compare/v1.3.1...v1.3.2] - 2020-07-11

Added

	VTK output for 2D triangular meshes.

Changed

	Updated reference to CMAME publication.

1.3.1 [https://github.com/kip-hart/MicroStructPy/compare/v1.3.0...v1.3.1] - 2020-07-09

Added

	VTK output for seed lists and polyhedral meshes.

	Option to compute expected area of ellipse from area distribution.

	Option to compute expected volume of ellipsoid from volume distribution.

Fixed

	Error in verification module for 2D uniform random orientations.

1.3.0 [https://github.com/kip-hart/MicroStructPy/compare/v1.2.2...v1.3.0] - 2020-06-25

Added

	Option to reduce the presence of short edges in polygonal meshes.

Changed

	Optimized seed positioning algorithm by using breadth-first search
in the AABB tree.

	Facets in polygonal meshes are now always defined with a positive
outward normal vector.

Fixed

	Plotting of 3D meshes.

	Documentation for empirical PDFs.

	Minor errors in examples.

1.2.2 [https://github.com/kip-hart/MicroStructPy/compare/v1.2.1...v1.2.2] - 2020-05-14

Fixed

	Matplotlib error with undefined axes.

1.2.1 [https://github.com/kip-hart/MicroStructPy/compare/v1.2.0...v1.2.1] - 2020-05-14

Changed

	Plot methods automatically update figure axes.

Fixed

	CLI plotting function for triangular/tetrahedral meshes.

1.2.0 [https://github.com/kip-hart/MicroStructPy/compare/v1.1.2...v1.2.0] - 2020-05-13

Added

	Options to shorten input keyword argument lists for plot methods
(addresses #14 [https://github.com/kip-hart/MicroStructPy/issues/14])

Changed

	Ellipse of best fit method calls the lsq-ellipse [https://pypi.org/project/lsq-ellipse] package.

Removed

	Removed support for Python 2.7.

1.1.2 [https://github.com/kip-hart/MicroStructPy/compare/v1.1.1...v1.1.2] - 2019-11-07

Fixed

	Paths to demo files in CLI, moved into source directory.

1.1.1 [https://github.com/kip-hart/MicroStructPy/compare/v1.1.0...v1.1.1] - 2019-11-05

Added

	DOI links to readme and documentation.

Changed

	Added logos, icons, social meta data for HTML documentation.

Fixed

	Paths to demo files in CLI.

1.1.0 [https://github.com/kip-hart/MicroStructPy/compare/v1.0.1...v1.1.0] - 2019-09-27

Added

	An __add__ method to the SeedList class.

Changed

	Project documentation.

1.0.1 [https://github.com/kip-hart/MicroStructPy/compare/v1.0.0...v1.0.1] - 2019-09-07

Changed

	Project documentation.

	Made project name lowercase in PyPI.

1.0.0 [https://github.com/kip-hart/MicroStructPy/releases/tag/v1.0.0] - 2019-09-07

Added

	Project added to GitHub.

MicroStructPy Contents

	Welcome
	Summary

	Examples

	Quick Start

	Publications

	License and Attribution

	Getting Started
	Download & Installation

	Running Demonstrations

	Development

	Examples
	Input File Introduction
	1. Basic Example

	2. Quality Controls

	3. Size & Shape

	4. Oriented Grains

	5. Plot Controls

	6. Culmination

	CLI Examples
	Elliptical Grains

	Minimal Example

	Picritic Basalt

	Two Phase 3D Example

	Colormap

	Python Package Examples
	Standard Voronoi Diagram

	Uniform Seeding Voronoi Diagram

	Foam

	MicroStructPy Logo

	Grain Neighborhoods

	Microstructure from Image

	Microstructure Mesh Process

	Command Line Guide
	Introduction
	Using the Command Line Interface

	Command Line Procedure

	Example Input File

	<material>
	Single Material

	Multiple Materials

	Grain Size Distributions

	Grain Geometries

	Material Type

	Grain Position Distribution

	Other Material Settings

	<domain>
	Box

	Circle

	Cube

	Ellipse

	Rectangle

	Square

	<settings>
	Defaults

	File and Console I/O

	Run Settings

	Plot Controls

	Python Package Guide
	The Standard Workflow

	Meshing Methods
	Laguerre-Voronoi Tessellation

	Unstructured Meshing

	File I/O & Plot Methods

	Phase Dictionaries

	Output File Formats
	List of Seeds

	Polygonal Mesh
	Text File

	Additional Formats

	Triangular Mesh
	Text File

	Additional Formats

	API
	microstructpy.cli

	microstructpy.geometry
	microstructpy.geometry.Box

	microstructpy.geometry.Circle

	microstructpy.geometry.Cube

	microstructpy.geometry.Ellipse

	microstructpy.geometry.Ellipsoid

	microstructpy.geometry.n_box.NBox

	microstructpy.geometry.n_sphere.NSphere

	microstructpy.geometry.Rectangle

	microstructpy.geometry.Sphere

	microstructpy.geometry.Square

	microstructpy.geometry.factory

	microstructpy.meshing
	microstructpy.meshing.PolyMesh

	microstructpy.meshing.TriMesh

	microstructpy.seeding
	microstructpy.seeding.Seed

	microstructpy.seeding.SeedList

	microstructpy.verification

	Troubleshooting
	Installation
	MeshPy fails to install

	Command Line Interface
	Command not found on Linux

	‘tkinter’ not found on Linux

	Program quits/segfaults while calculating Voronoi diagram

Welcome

Summary

MicroStructPy is a microstructure mesh generator written in Python.
Features of MicroStructPy include:

	2D and 3D microstructures

	Grain size, shape, orientation, and position control

	Polycrystals, amorphous phases, and voids

	Mesh verification

	Visualizations

	Output to common file formats

	Customizable workflow

[image: Banner image showing the three steps for creating microstructure.]
The primary steps to create a microstructure.
1) seed the domain with particles,
2) create a Voronoi power diagram, and
3) convert the diagram into an unstructured mesh.

Examples

These images were created using MicroStructPy.
For more examples, see the Examples section.

[image: Several examples created using MicroStructPy.]
Examples created using MicroStructPy.

Quick Start

To install MicroStructPy, download it from PyPI using:

pip install microstructpy

If there is an error with the install, try pip install pybind11 first,
then install MicroStructPy.
This will create a command line executable and python package both
named microstructpy.
To use the command line interface, create a file called input.xml and copy
this into it:

<?xml version="1.0" encoding="UTF-8"?>
<input>
 <material>
 <shape> circle </shape>
 <size> 0.15 </size>
 </material>

 <domain>
 <shape> square </shape>
 </domain>
</input>

Next, run the file from the command line:

microstructpy input.xml

This will produce three text files and three image files: seeds.txt,
polymesh.txt, trimesh.txt, seeds.png, polymesh.png, and
trimesh.png.
The text files contain all of the data related to the seed geometries and
meshes.
The image files contain:

[image: Seed geometries, polygonal mesh, and unstructured mesh for min. expl.]
The output plots are:
1) seed geometries, 2) polygonal mesh, and 3) triangular mesh.

The same results can be produced using this script:

import matplotlib.pyplot as plt
import microstructpy as msp

phase = {'shape': 'circle', 'size': 0.15}
domain = msp.geometry.Square()

Unpositioned list of seeds
seeds = msp.seeding.SeedList.from_info(phase, domain.area)

Position seeds in domain
seeds.position(domain)

Create polygonal mesh
polygon_mesh = msp.meshing.PolyMesh.from_seeds(seeds, domain)

Create triangular mesh
triangle_mesh = msp.meshing.TriMesh.from_polymesh(polygon_mesh)

Plot outputs
for output in [seeds, polygon_mesh, triangle_mesh]:
 plt.figure()
 output.plot(edgecolor='k')
 plt.axis('image')
 plt.axis([-0.5, 0.5, -0.5, 0.5])
 plt.show()

Publications

If you use MicroStructPy in you work, please consider including this citation
in your bibliography:

K. A. Hart and J. J. Rimoli, Generation of statistically representative
microstructures with direct grain geomety control,
Computer Methods in Applied Mechanics and Engineering,
370 (2020), pp. 113242.
(BibTeX [https://github.com/kip-hart/MicroStructPy/raw/master/docs/publications/cmame2020.bib])
(DOI [https://doi.org/10.1016/j.cma.2020.113242])

License and Attribution

MicroStructPy is open source and freely available.
Copyright for MicroStructPy is held by Georgia Tech Research Corporation.
MicroStructPy is a major part of Kenneth (Kip) Hart’s doctoral thesis,
advised by Prof. Julian Rimoli.

 _static/logo/logo_32x32.png

_static/logo/logo_57x57.png

_static/logo/logo_196x196.png

_static/logo/logo_228x228.png

_images/banner1.png

_images/banner2.png

_static/logo/logo_72x72.png

_images/banner.png

_static/logo/logo_76x76.png

_images/polymesh.png
Plagioclase
olivine
Diopside
Hypersthene
Magnetite
Chromite
limenite
Apatite

_images/joined.png
R

_images/polymesh1.png

_images/polymesh10.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.0

_static/logo/logo_180x180.png

_static/logo/logo_192x192.png

_static/logo/logo_128x128.png

_static/logo/logo_144x144.png

_images/polymesh11.png

nav.xhtml

 Table of Contents

 		
 MicroStructPy - Microstructure Mesh Generation in Python

_images/polymesh3.png

_images/polymesh4.png
= Phase 1

Phase 2

[Y

_images/polymesh12.png

_images/polymesh2.png

_images/polymesh7.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.0

_images/polymesh8.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.0

_images/polymesh5.png

_images/polymesh6.png
= Phase 1

Phase 2

[Y

_images/polymesh9.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.0

_images/seeds.png
Plagioclase
Olivine
Diopside
Hypersthene
Magnetite
Chromite
limenite

Apatite

T

_images/seeds1.png

_images/seeds3.png

_images/seeds4.png
CRNW AL a g

_images/seeds10.png

_images/seeds2.png

_images/seeds7.png

_images/seeds8.png
125 15.0 17.5 20.

°
=

75

5.0

25

.0

_images/seeds5.png
10.0 12.5 15.0 17.5 20.(

_images/seeds6.png
.
Matrix
== B inclusions

125 15.0 17.5 20.

_images/size_cdf.png
10

° ° °
= S ®

Cumulative Distribution Function

°
o

0.0

CDF Comparison

Input

— Actual

Plagioclase
Olivine
Diopside
Hypersthene
Magnetite
Chromite
limenite

Apatite

15 2.0
size

S TEEETT

.5 3.0

_images/seeds9.png

_images/sphx_glr_plot_rectangle_002.png

_images/trimesh.png
Plagioclase
Olivine
Diopside
Hypersthene
Magnetite
Chromite
limenite
Apatite

_images/sphx_glr_plot_ellipse_001.png

_images/sphx_glr_plot_rectangle_001.png
A
=

)

V)‘ ([

\ |
N

_images/trimesh11.png

_images/trimesh1.png

_images/trimesh10.png

_images/trimesh14.png
Doyl

ey
i |

et

T

_images/trimesh15.png

_images/trimesh12.png
Plagioclase
Olivine
Diopside
Hypersthene
Magnetite
Chromite
limenite
Apatite

_images/trimesh13.png

_images/trimesh18.png
Matrix
Inclusions

_images/trimesh19.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.

_images/trimesh16.png

_images/trimesh17.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.

_images/trimesh2.png

_images/trimesh20.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.

_images/aluminum_micro.png

_images/trimesh24.png

_images/trimesh25.png

_images/trimesh22.png

_images/trimesh23.png
Doyl

ey
i |

et

T

_images/trimesh5.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.

_images/trimesh6.png
Matrix
Inclusions

_images/trimesh3.png

_images/trimesh4.png
mm Phase 1
Phase 2

CRNW A G a g

_images/trimesh7.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.

_static/logo/pad_logo.png

_static/logo/logo_96x96.png

_static/logo/social.png
MicroStructPy

Microstructure Mesh Generation in Python

_images/trimesh21.png

_images/voronoi_diagram2.png
0.4

02

0.0

_images/voronoi_diagram3.png
00 02 04 06 08 10

0.002289 0.005000 0.007794
cell Area

_images/voronoi_diagram.png
0.4

02

0.0

_images/voronoi_diagram1.png
00 02 04 06 08 10

0.002289 0.005000 0.007794
cell Area

_static/broken_example.png

_images/welcome_examples.png
20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

I Matrix
[Inclusions

I Phasel
Phase 2

OHI\JUJ.J:.U‘IO\\j

Plagioclase
Olivine
Diopside
Hypersthene
Magnetite
Chromite
lImenite

_images/trimesh8.png
75

5.0

2.5

0.0
00 25 50 75 10.0

Matrix
Inclusions

125 15.0 17.5 20.

_images/trimesh9.png

_static/logo/logo.png

_static/no_image.png

_static/plus.png

_static/logo/logo_120x120.png

_static/logo/logo_114x114.png

_static/minus.png

_static/file.png

